1
|
Franco-Rosado P, Callejón MA, Reina-Tosina J, Roa LM, Martin-Rodriguez JF, Mir P. Addressing the sources of inter-subject variability in E-field parameters in anodal tDCS stimulation over motor cortical network. Phys Med Biol 2024; 69:145013. [PMID: 38917834 DOI: 10.1088/1361-6560/ad5bb9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Objetive: .Although transcranial direct current stimulation constitutes a non-invasive neuromodulation technique with promising results in a great variety of applications, its clinical implementation is compromised by the high inter-subject variability reported. This study aims to analyze the inter-subject variability in electric fields (E-fields) over regions of the cortical motor network under two electrode montages: the classical C3Fp2 and an alternative P3F3, which confines more the E-field over this region.Approach.Computational models of the head of 98 healthy subjects were developed to simulate the E-field under both montages. E-field parameters such as magnitude, focality and orientation were calculated over three regions of interest (ROI): M1S1, supplementary motor area (SMA) and preSMA. The role of anatomical characteristics as a source of inter-subject variability on E-field parameters and individualized stimulation intensity were addressed using linear mixed-effect models.Main results.P3F3 showed a more confined E-field distribution over M1S1 than C3Fp2; the latter elicited higher E-fields over supplementary motor areas. Both montages showed high inter-subject variability, especially for the normal component over C3Fp2. Skin, bone and CSF ROI volumes showed a negative association with E-field magnitude irrespective of montage. Grey matter volume and montage were the main sources of variability for focality. The curvature of gyri was found to be significantly associated with the variability of normal E-fields.Significance.Computational modeling proves useful in the assessment of E-field variability. Our simulations predict significant differences in E-field magnitude and focality for C3Fp2 and P3F3. However, anatomical characteristics were also found to be significant sources of E-field variability irrespective of electrode montage. The normal E-field component better captured the individual variability and low rate of responder subjects observed in experimental studies.
Collapse
Affiliation(s)
- Pablo Franco-Rosado
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
- Departamento de Psicología Experimental, Universidad de Sevilla, Sevilla, Spain
| | - M Amparo Callejón
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
- Servicio de Otorrinolaringología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Javier Reina-Tosina
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
| | - Laura M Roa
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
| | - Juan F Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Psicología Experimental, Universidad de Sevilla, Sevilla, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Haihambo N, Li M, Ma Q, Baeken C, Deroost N, Baetens K, Van Overwalle F. Exciting the social butterfly: Anodal cerebellar transcranial direct current stimulation modulates neural activation during predictive social mentalizing. Int J Clin Health Psychol 2024; 24:100480. [PMID: 39055855 PMCID: PMC11269293 DOI: 10.1016/j.ijchp.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has emerged as a promising tool for enhancing social cognition. The posterior cerebellum, which is part of the mentalizing network, has been implicated in social processes. In our combined tDCS-fMRI study, we investigated the effects of offline anodal cerebellar tDCS on activation in the cerebellum during social action prediction. Forty-one participants were randomly assigned to receive either anodal (2 mA) or sham (0 mA) stimulation over the midline of the posterior cerebellum for 20 min. Twenty minutes post stimulation, participants underwent a functional MRI scan to complete a social action prediction task, during which they had to correctly order randomly presented sentences that described either actions of social agents (based on their personality traits) or events of objects (based on their characteristics). As hypothesized, our results revealed that participants who received anodal cerebellar tDCS exhibited increased activation in the posterior cerebellar Crus 2 and lobule IX, and in key cerebral mentalizing areas, including the medial prefrontal cortex, temporo-parietal junction, and precuneus. Contrary to our hypotheses, participants who received anodal stimulation demonstrated faster responses to non-social objects compared to social agents, while sham participants showed no significant differences. We did not find a significant relationship between electric field magnitude, neural activation and behavioral outcomes. These findings suggest that tDCS targeting the posterior cerebellum selectively enhances activation in social mentalizing areas, while only facilitating behavioral performance of non-social material, perhaps because of a ceiling effect due to familiarity with social processing.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Centre for Human Brain Health, University of Birmingham, Bochum, Germany
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Meijia Li
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing, China
| | - Qianying Ma
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent Experimental, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
3
|
Buschermöhle Y, Höltershinken MB, Erdbrügger T, Radecke JO, Sprenger A, Schneider TR, Lencer R, Gross J, Wolters CH. Comparing the performance of beamformer algorithms in estimating orientations of neural sources. iScience 2024; 27:109150. [PMID: 38420593 PMCID: PMC10901088 DOI: 10.1016/j.isci.2024.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/12/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
The efficacy of transcranial electric stimulation (tES) to effectively modulate neuronal activity depends critically on the spatial orientation of the targeted neuronal population. Therefore, precise estimation of target orientation is of utmost importance. Different beamforming algorithms provide orientation estimates; however, a systematic analysis of their performance is still lacking. For fixed brain locations, EEG and MEG data from sources with randomized orientations were simulated. The orientation was then estimated (1) with an EEG and (2) with a combined EEG-MEG approach. Three commonly used beamformer algorithms were evaluated with respect to their abilities to estimate the correct orientation: Unit-Gain (UG), Unit-Noise-Gain (UNG), and Array-Gain (AG) beamformer. Performance depends on the signal-to-noise ratios for the modalities and on the chosen beamformer. Overall, the UNG and AG beamformers appear as the most reliable. With increasing noise, the UG estimate converges to a vector determined by the leadfield, thus leading to insufficient orientation estimates.
Collapse
Affiliation(s)
- Yvonne Buschermöhle
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149 Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Malte B Höltershinken
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149 Münster, Germany
- Institute for Analysis and Numerics, University of Münster, 48149 Münster, Germany
| | - Tim Erdbrügger
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149 Münster, Germany
- Institute for Analysis and Numerics, University of Münster, 48149 Münster, Germany
| | - Jan-Ole Radecke
- Department of Psychiatry and Psychotherapy, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Andreas Sprenger
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562 Lübeck, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Rebekka Lencer
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Institute of Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149 Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149 Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Antonakakis M, Kaiser F, Rampp S, Kovac S, Wiendl H, Stummer W, Gross J, Kellinghaus C, Khaleghi-Ghadiri M, Möddel G, Wolters CH. Targeted and optimized multi-channel transcranial direct current stimulation for focal epilepsy: An N-of-1 trial. Brain Stimul 2024; 17:221-223. [PMID: 38387556 DOI: 10.1016/j.brs.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Marios Antonakakis
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece.
| | - Fabian Kaiser
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Compumedics Neuroscan GmbH, Hamburg, Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany; Department of Neurosurgery, University Hospital Halle (Saale), Germany; Department of Neuroradiology, University Hospital Erlangen, Germany
| | - Stjepana Kovac
- Epilepsy Center Münster-Osnabrück, Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Epilepsy Center Münster-Osnabrück, Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Christoph Kellinghaus
- Epilepsy Center Münster-Osnabrück, Department of Neurology, Klinikum Osnabrück, Osnabrück, Germany
| | | | - Gabriel Möddel
- Epilepsy Center Münster-Osnabrück, Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| |
Collapse
|
5
|
Radecke JO, Sprenger A, Stöckler H, Espeter L, Reichhardt MJ, Thomann LS, Erdbrügger T, Buschermöhle Y, Borgwardt S, Schneider TR, Gross J, Wolters CH, Lencer R. Normative tDCS over V5 and FEF reveals practice-induced modulation of extraretinal smooth pursuit mechanisms, but no specific stimulation effect. Sci Rep 2023; 13:21380. [PMID: 38049419 PMCID: PMC10695990 DOI: 10.1038/s41598-023-48313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The neural networks subserving smooth pursuit eye movements (SPEM) provide an ideal model for investigating the interaction of sensory processing and motor control during ongoing movements. To better understand core plasticity aspects of sensorimotor processing for SPEM, normative sham, anodal or cathodal transcranial direct current stimulation (tDCS) was applied over visual area V5 and frontal eye fields (FEF) in sixty healthy participants. The identical within-subject paradigm was used to assess SPEM modulations by practice. While no specific tDCS effects were revealed, within- and between-session practice effects indicate plasticity of top-down extraretinal mechanisms that mainly affect SPEM in the absence of visual input and during SPEM initiation. To explore the potential of tDCS effects, individual electric field simulations were computed based on calibrated finite element head models and individual functional localization of V5 and FEF location (using functional MRI) and orientation (using combined EEG/MEG) was conducted. Simulations revealed only limited electric field target intensities induced by the applied normative tDCS montages but indicate the potential efficacy of personalized tDCS for the modulation of SPEM. In sum, results indicate the potential susceptibility of extraretinal SPEM control to targeted external neuromodulation (e.g., personalized tDCS) and intrinsic learning protocols.
Collapse
Affiliation(s)
- Jan-Ole Radecke
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany.
| | - Andreas Sprenger
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Department of Neurology, University of Lübeck, 23562, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562, Lübeck, Germany
| | - Hannah Stöckler
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Lisa Espeter
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Mandy-Josephine Reichhardt
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562, Lübeck, Germany
| | - Lara S Thomann
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Tim Erdbrügger
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
| | - Yvonne Buschermöhle
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
- Institute for Translational Psychiatry, University of Münster, 48149, Münster, Germany
| |
Collapse
|
6
|
Thibaut A, Fregni F, Estraneo A, Fiorenza S, Noe E, Llorens R, Ferri J, Formisano R, Morone G, Bender A, Rosenfelder M, Lamberti G, Kodratyeva E, Kondratyev S, Legostaeva L, Suponeva N, Krewer C, Müller F, Dardenne N, Jedidi H, Laureys S, Gosseries O, Lejeune N, Martens G. Sham-controlled randomized multicentre trial of transcranial direct current stimulation for prolonged disorders of consciousness. Eur J Neurol 2023; 30:3016-3031. [PMID: 37515394 DOI: 10.1111/ene.15974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND AND PURPOSE Transcranial direct current stimulation (tDCS) has been shown to improve signs of consciousness in a subset of patients with disorders of consciousness (DoC). However, no multicentre study confirmed its efficacy when applied during rehabilitation. In this randomized controlled double-blind study, the effects of tDCS whilst patients were in rehabilitation were tested at the group level and according to their diagnosis and aetiology to better target DoC patients who might repond to tDCS. METHODS Patients received 2 mA tDCS or sham applied over the left prefrontal cortex for 4 weeks. Behavioural assessments were performed weekly and up to 3 months' follow-up. Analyses were conducted at the group and subgroup levels based on the diagnosis (minimally conscious state [MCS] and unresponsive wakefulness syndrome) and the aetiology (traumatic or non-traumatic). Interim analyses were planned to continue or stop the trial. RESULTS The trial was stopped for futility when 62 patients from 10 centres were enrolled (44 ± 14 years, 37 ± 24.5 weeks post-injury, 18 women, 32 MCS, 39 non-traumatic). Whilst, at the group level, no treatment effect was found, the subgroup analyses at 3 months' follow-up revealed a significant improvement for patients in MCS and with traumatic aetiology. CONCLUSIONS Transcranial direct current stimulation during rehabilitation does not seem to enhance patients' recovery. However, diagnosis and aetiology appear to be important factors leading to a response to the treatment. These findings bring novel insights into possible cortical plasticity changes in DoC patients given these differential results according to the subgroups of patients.
Collapse
Affiliation(s)
- Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
| | - Felipe Fregni
- Neuromodulation Lab, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Estraneo
- Neurorehabilitation Department, Scientific Institute for Research and Health Care, Don Carlo Gnocchi Foundation, Sant'Angelo dei Lombardi, Florence, Italy
| | - Salvatore Fiorenza
- Neurorehabilitation Department, Scientific Institute for Research and Health Care, Don Carlo Gnocchi Foundation, Sant'Angelo dei Lombardi, Florence, Italy
| | - Enrique Noe
- IRENEA Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, Valéncia, Spain
| | - Roberto Llorens
- IRENEA Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, Valéncia, Spain
- Neurorehabilitation and Brain Research Group, Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | - Joan Ferri
- IRENEA Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, Valéncia, Spain
| | - Rita Formisano
- Santa Lucia Foundation, Neurorehabilitation and Scientific Institute for Research, Rome, Italy
| | - Giovanni Morone
- Santa Lucia Foundation, Neurorehabilitation and Scientific Institute for Research, Rome, Italy
| | - Andreas Bender
- Therapiezentrum Burgau, Burgau, Germany
- Department of Neurology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Martin Rosenfelder
- Therapiezentrum Burgau, Burgau, Germany
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Gianfranco Lamberti
- Neurorehabilitation Department AUSL Piacenza - University of Parma, Piacenza, Italy
| | | | | | | | | | - Carmen Krewer
- Department for Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Friedemann Müller
- Department for Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Nadia Dardenne
- University and Hospital Biostatistics Center (B-STAT), Faculty of Medicine, University of Liège, Liège, Belgium
| | | | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, CIUSS, University Laval, Quebec, Canada
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
- Centre Hospitalier Neurologique William Lennox, Ottignies-Louvain-la-Neuve, Belgium
| | - Géraldine Martens
- Coma Science Group, GIGA-Consciousness, Centre du Cerveau2, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
7
|
Radecke JO, Fiene M, Misselhorn J, Herrmann CS, Engel AK, Wolters CH, Schneider TR. Personalized alpha-tACS targeting left posterior parietal cortex modulates visuo-spatial attention and posterior evoked EEG activity. Brain Stimul 2023; 16:1047-1061. [PMID: 37353071 DOI: 10.1016/j.brs.2023.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Covert visuo-spatial attention is marked by the anticipatory lateralization of neuronal alpha activity in the posterior parietal cortex. Previous applications of transcranial alternating current stimulation (tACS) at the alpha frequency, however, were inconclusive regarding the causal contribution of oscillatory activity during visuo-spatial attention. OBJECTIVE Attentional shifts of behavior and electroencephalography (EEG) after-effects were assessed in a cued visuo-spatial attention paradigm. We hypothesized that parietal alpha-tACS shifts attention relative to the ipsilateral visual hemifield. Furthermore, we assumed that modulations of behavior and neurophysiology are related to individual electric field simulations. METHODS We applied personalized tACS at alpha and gamma frequencies to elucidate the role of oscillatory neuronal activity for visuo-spatial attention. Personalized tACS montages were algorithmically optimized to target individual left and right parietal regions that were defined by an EEG localizer. RESULTS Behavioral performance in the left hemifield was specifically increased by alpha-tACS compared to gamma-tACS targeting the left parietal cortex. This hemisphere-specific effect was observed despite the symmetry of simulated electric fields. In addition, visual event-related potential (ERP) amplitudes showed a reduced lateralization over posterior sites induced by left alpha-tACS. Neuronal sources of this effect were localized in the left premotor cortex. Interestingly, accuracy modulations induced by left parietal alpha-tACS were directly related to electric field magnitudes in the left premotor cortex. CONCLUSION Overall, results corroborate the notion that alpha lateralization plays a causal role in covert visuo-spatial attention and indicate an increased susceptibility of parietal and premotor brain regions of the left dorsal attention network to subtle tACS-neuromodulation.
Collapse
Affiliation(s)
- Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany; Cluster of Excellence "Hearing4all", Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
8
|
Albizu A, Indahlastari A, Huang Z, Waner J, Stolte SE, Fang R, Woods AJ. Machine-learning defined precision tDCS for improving cognitive function. Brain Stimul 2023; 16:969-974. [PMID: 37279860 PMCID: PMC11080612 DOI: 10.1016/j.brs.2023.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) paired with cognitive training (CT) is widely investigated as a therapeutic tool to enhance cognitive function in older adults with and without neurodegenerative disease. Prior research demonstrates that the level of benefit from tDCS paired with CT varies from person to person, likely due to individual differences in neuroanatomical structure. OBJECTIVE The current study aims to develop a method to objectively optimize and personalize current dosage to maximize the functional gains of non-invasive brain stimulation. METHODS A support vector machine (SVM) model was trained to predict treatment response based on computational models of current density in a sample dataset (n = 14). Feature weights of the deployed SVM were used in a weighted Gaussian Mixture Model (GMM) to maximize the likelihood of converting tDCS non-responders to responders by finding the most optimum electrode montage and applied current intensity (optimized models). RESULTS Current distributions optimized by the proposed SVM-GMM model demonstrated 93% voxel-wise coherence within target brain regions between the originally non-responders and responders. The optimized current distribution in original non-responders was 3.38 standard deviations closer to the current dose of responders compared to the pre-optimized models. Optimized models also achieved an average treatment response likelihood and normalized mutual information of 99.993% and 91.21%, respectively. Following tDCS dose optimization, the SVM model successfully predicted all tDCS non-responders with optimized doses as responders. CONCLUSIONS The results of this study serve as a foundation for a custom dose optimization strategy towards precision medicine in tDCS to improve outcomes in cognitive decline remediation for older adults.
Collapse
Affiliation(s)
- Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Ziqian Huang
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Jori Waner
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Skylar E Stolte
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Ruogu Fang
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA; Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA.
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA.
| |
Collapse
|