1
|
Schuler AL, Hartwigsen G. The potential of interleaved TMS-fMRI for linking stimulation-induced changes in task-related activity with behavioral modulations. Brain Stimul 2024; 18:37-51. [PMID: 39716572 DOI: 10.1016/j.brs.2024.12.1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024] Open
Abstract
The simultaneous combination of TMS with fMRI has emerged as a promising means to investigate the direct interaction between stimulation-induced changes at the behavioral and neural activity level. This enables the investigation of whole brain neurobehavioral interactions underlying cognitive disruption or facilitation. Yet to date, the literature on interleaved TMS-fMRI in cognitive neuroscience is sparse and neuromodulatory patterns of different TMS protocols are still poorly understood. Here, we synthesize interleaved TMS-fMRI studies on the relationship between direct stimulation-induced changes on task related neural activity and behavior. The following main findings are discussed. First, approximately half of the studies report a relationship between neural activity and behavioral changes as a marker for network excitation or inhibition. Secondly, task difficulty and stimulation timing are crucial factors that impact the interaction between neural activity changes and behavior. Third, stimulation-induced changes in remote, connected areas seem to be stronger associated with facilitation effects at the behavioral level. A better understanding of the relationship between stimulation-induced changes at the neural and behavioral level will increase the current understanding of the neuromodulatory potential of TMS at different levels and may help to develop more efficient stimulation protocols for basic and applied research.
Collapse
Affiliation(s)
- Anna-Lisa Schuler
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany.
| | - Gesa Hartwigsen
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, 04109, Germany
| |
Collapse
|
2
|
Grosshagauer S, Woletz M, Vasileiadi M, Linhardt D, Nohava L, Schuler AL, Windischberger C, Williams N, Tik M. Chronometric TMS-fMRI of personalized left dorsolateral prefrontal target reveals state-dependency of subgenual anterior cingulate cortex effects. Mol Psychiatry 2024; 29:2678-2688. [PMID: 38532009 PMCID: PMC11420068 DOI: 10.1038/s41380-024-02535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Transcranial magnetic stimulation (TMS) applied to a left dorsolateral prefrontal cortex (DLPFC) area with a specific connectivity profile to the subgenual anterior cingulate cortex (sgACC) has emerged as a highly effective non-invasive treatment option for depression. However, antidepressant outcomes demonstrate significant variability among therapy plans and individuals. One overlooked contributing factor is the individual brain state at the time of treatment. In this study we used interleaved TMS-fMRI to investigate the influence of brain state on acute TMS effects, both locally and remotely. TMS was performed during rest and during different phases of cognitive task processing. Twenty healthy participants were included in this study. In the first session, imaging data for TMS targeting were acquired, allowing for identification of individualized targets in the left DLPFC based on highest anti-correlation with the sgACC. The second session involved chronometric interleaved TMS-fMRI measurements, with 10 Hz triplets of TMS administered during rest and at distinct timings during an N-back task. Consistent with prior findings, interleaved TMS-fMRI revealed significant BOLD activation changes in the targeted network. The precise timing of TMS relative to the cognitive states during the task demonstrated distinct BOLD response in clinically relevant brain regions, including the sgACC. Employing a standardized timing approach for TMS using a task revealed more consistent modulation of the sgACC at the group level compared to stimulation during rest. In conclusion, our findings strongly suggest that acute local and remote effects of TMS are influenced by brain state during stimulation. This study establishes a basis for considering brain state as a significant factor in designing treatment protocols, possibly improving TMS treatment outcomes.
Collapse
Affiliation(s)
- Sarah Grosshagauer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Michael Woletz
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Maria Vasileiadi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - David Linhardt
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Lena Nohava
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Anna-Lisa Schuler
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian Windischberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Martin Tik
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Moser P, Reishofer G, Prückl R, Schaffelhofer S, Freigang S, Thumfart S, Mahdy Ali K. Real-time estimation of the optimal coil placement in transcranial magnetic stimulation using multi-task deep learning. Sci Rep 2024; 14:19361. [PMID: 39169126 PMCID: PMC11339299 DOI: 10.1038/s41598-024-70367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a promising neuromodulation technique with both therapeutic and diagnostic applications. As accurate coil placement is known to be essential for focal stimulation, computational models have been established to help find the optimal coil positioning by maximizing electric fields at the cortical target. While these numerical simulations provide realistic and subject-specific field distributions, they are computationally demanding, precluding their use in real-time applications. In this paper, we developed a novel multi-task deep neural network which simultaneously predicts the optimal coil placement for a given cortical target as well as the associated TMS-induced electric field. Trained on large amounts of preceding numerical optimizations, the Attention U-Net-based neural surrogate provided accurate coil optimizations in only 35 ms, a fraction of time compared to the state-of-the-art numerical framework. The mean errors on the position estimates were below 2 mm, i.e., smaller than previously reported manual coil positioning errors. The predicted electric fields were also highly correlated (r> 0.97) with their numerical references. In addition to healthy subjects, we validated our approach also in glioblastoma patients. We first statistically underlined the importance of using realistic heterogeneous tumor conductivities instead of simply adopting values from the surrounding healthy tissue. Second, applying the trained neural surrogate to tumor patients yielded similar accurate positioning and electric field estimates as in healthy subjects. Our findings provide a promising framework for future real-time electric field-optimized TMS applications.
Collapse
Affiliation(s)
- Philipp Moser
- Research Unit Medical Informatics, RISC Software GmbH, Softwarepark 32a, Hagenberg, 4232, Austria.
| | - Gernot Reishofer
- Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, 8036, Austria
| | - Robert Prückl
- cortEXplore GmbH, Industriezeile 35, Linz, 4020, Austria
| | | | - Sascha Freigang
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| | - Stefan Thumfart
- Research Unit Medical Informatics, RISC Software GmbH, Softwarepark 32a, Hagenberg, 4232, Austria
| | - Kariem Mahdy Ali
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, Graz, 8036, Austria
| |
Collapse
|
4
|
Nakajima R, Osada T, Kinoshita M, Ogawa A, Okita H, Konishi S, Nakada M. More widespread functionality of posterior language area in patients with brain tumors. Hum Brain Mapp 2024; 45:e26801. [PMID: 39087903 PMCID: PMC11293139 DOI: 10.1002/hbm.26801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Damage to the posterior language area (PLA), or Wernicke's area causes cortical reorganization in the corresponding regions of the contralateral hemisphere. However, the details of reorganization within the ipsilateral hemisphere are not fully understood. In this context, direct electrical stimulation during awake surgery can provide valuable opportunities to investigate neuromodulation of the human brain in vivo, which is difficult through the non-invasive approaches. Thus, in this study, we aimed to investigate the characteristics of the cortical reorganization of the PLA within the ipsilateral hemisphere. Sixty-two patients with left hemispheric gliomas were divided into groups depending on whether the lesion extended to the PLA. All patients underwent direct cortical stimulation with a picture-naming task. We further performed functional connectivity analyses using resting-state functional magnetic resonance imaging (MRI) in a subset of patients and calculated betweenness centrality, an index of the network importance of brain areas. During direct cortical stimulation, the regions showing positive (impaired) responses in the non-PLA group were localized mainly in the posterior superior temporal gyrus (pSTG), whereas those in the PLA group were widely distributed from the pSTG to the posterior supramarginal gyrus (pSMG). Notably, the percentage of positive responses in the pSMG was significantly higher in the PLA group (47%) than in the non-PLA group (8%). In network analyses of functional connectivity, the pSMG was identified as a hub region with high betweenness centrality in both the groups. These findings suggest that the language area can spread beyond the PLA to the pSMG, a hub region, in patients with lesion progression to the pSTG. The change in the pattern of the language area may be a compensatory mechanism to maintain efficient brain networks.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Takahiro Osada
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Akitoshi Ogawa
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Hirokazu Okita
- Department of Physical Medicine and RehabilitationKanazawa University HospitalKanazawaJapan
| | - Seiki Konishi
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
- Sapiens Life SciencesEvolution and Medicine Research CenterKanazawa UniversityKanazawaJapan
| |
Collapse
|
5
|
Salillas E, De Pellegrin S, Semenza C. Awake brain surgery: toward optimal cognitive explorations. Front Hum Neurosci 2024; 18:1369462. [PMID: 38601802 PMCID: PMC11004270 DOI: 10.3389/fnhum.2024.1369462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Elena Salillas
- Department of Psychology and Sociology, Universidad de Zaragoza, Zaragoza, Spain
| | - Serena De Pellegrin
- Neurology Clinic, Department of Neuroscience, Padua University Hospital, Padova, Italy
| | - Carlo Semenza
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Oberman LM, Francis SM, Beynel L, Hynd M, Jaime M, Robins PL, Deng ZD, Stout J, van der Veen JW, Lisanby SH. Design and methodology for a proof of mechanism study of individualized neuronavigated continuous Theta burst stimulation for auditory processing in adolescents with autism spectrum disorder. Front Psychiatry 2024; 15:1304528. [PMID: 38389984 PMCID: PMC10881663 DOI: 10.3389/fpsyt.2024.1304528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
It has been suggested that aberrant excitation/inhibition (E/I) balance and dysfunctional structure and function of relevant brain networks may underlie the symptoms of autism spectrum disorder (ASD). However, the nomological network linking these constructs to quantifiable measures and mechanistically relating these constructs to behavioral symptoms of ASD is lacking. Herein we describe a within-subject, controlled, proof-of-mechanism study investigating the pathophysiology of auditory/language processing in adolescents with ASD. We utilize neurophysiological and neuroimaging techniques including magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG) metrics of language network structure and function. Additionally, we apply a single, individually targeted session of continuous theta burst stimulation (cTBS) as an experimental probe of the impact of perturbation of the system on these neurophysiological and neuroimaging outcomes. MRS, fMRI, and MEG measures are evaluated at baseline and immediately prior to and following cTBS over the posterior superior temporal cortex (pSTC), a region involved in auditory and language processing deficits in ASD. Also, behavioral measures of ASD and language processing and DWI measures of auditory/language network structures are obtained at baseline to characterize the relationship between the neuroimaging and neurophysiological measures and baseline symptom presentation. We hypothesize that local gamma-aminobutyric acid (GABA) and glutamate concentrations (measured with MRS), and structural and functional activity and network connectivity (measured with DWI and fMRI), will significantly predict MEG indices of auditory/language processing and behavioral deficits in ASD. Furthermore, a single session of cTBS over left pSTC is hypothesized to lead to significant, acute changes in local glutamate and GABA concentration, functional activity and network connectivity, and MEG indices of auditory/language processing. We have completed the pilot phase of the study (n=20 Healthy Volunteer adults) and have begun enrollment for the main phase with adolescents with ASD (n=86; age 14-17). If successful, this study will establish a nomological network linking local E/I balance measures to functional and structural connectivity within relevant brain networks, ultimately connecting them to ASD symptoms. Furthermore, this study will inform future therapeutic trials using cTBS to treat the symptoms of ASD.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sunday M Francis
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lysianne Beynel
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Megan Hynd
- Clinical Affective Neuroscience Laboratory, Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, United States
| | - Miguel Jaime
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jeff Stout
- Magnetoencephalography Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Jan Willem van der Veen
- Magnetic Resonance Spectroscopy Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Luo Y, Wang K, Jiao S, Zeng J, Han Z. Distinct parallel activation and interaction between dorsal and ventral pathways during phonological and semantic processing: A cTBS-fMRI study. Hum Brain Mapp 2024; 45:e26569. [PMID: 38224540 PMCID: PMC10785560 DOI: 10.1002/hbm.26569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
Successful visual word recognition requires the integration of phonological and semantic information, which is supported by the dorsal and ventral pathways in the brain. However, the functional specialization or interaction of these pathways during phonological and semantic processing remains unclear. Previous research has been limited by its dependence on correlational functional magnetic resonance imaging (fMRI) results or causal validation using patient populations, which are susceptible to confounds such as plasticity and lesion characteristics. To address this, the present study employed continuous theta-burst stimulation combined with fMRI in a within-subject design to assess rapid adaptation in regional activity and functional connectivity of the dorsal and ventral pathways during phonological and semantic tasks. This assessment followed the precise inhibition of the left inferior parietal lobule and anterior temporal lobe in the dorsal and ventral pathways, respectively. Our results reveal that both the dorsal and ventral pathways were activated during phonological and semantic processing, while the adaptation activation and interactive network were modulated by the task type and inhibited region. The two pathways exhibited interconnectivity in phonological processing, and disruption of either pathway led to rapid adaptation across both pathways. In contrast, only the ventral pathway exhibited connectivity in semantic processing, and disruption of this pathway alone resulted in adaptive effects primarily in the ventral pathway. These findings provide essential evidence supporting the interactive theory, phonological information processing in particular, potentially providing meaningful implications for clinical populations.
Collapse
Affiliation(s)
- Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- School of System ScienceBeijing Normal UniversityBeijingChina
| | - Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|