1
|
Kou M, Li C, Song W, Shen Y, Tang W, Zhang Y, Wang X, Yan H, Gao R, Ahmad MQ, Li Q. Identification and functional characterization of a flavonol synthase gene from sweet potato [ Ipomoea batatas (L.) Lam.]. FRONTIERS IN PLANT SCIENCE 2023; 14:1181173. [PMID: 37235006 PMCID: PMC10206235 DOI: 10.3389/fpls.2023.1181173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Flavonol synthase (FLS) is a key enzyme of the flavonoid biosynthetic pathway, which catalyzes the conversion of dihydroflavonols into flavonols. In this study, the FLS gene IbFLS1 was cloned and characterized from sweet potato. The resulting IbFLS1 protein showed a high similarity with other plant FLSs. The conserved amino acids (HxDxnH motifs) binding ferrous iron and residues (RxS motifs) binding 2-oxoglutarate were found in IbFLS1 at conserved positions, as in other FLSs, suggesting that IbFLS1 belongs to the 2-oxoglutarate-dependent dioxygenases (2-ODD) superfamily. qRT-PCR analysis showed an organ-specific pattern of expression of the IbFLS1 gene, which was predominantly expressed in young leaves. The recombinant IbFLS1 protein could catalyze the conversion of dihydrokaempferol and dihydroquercetin to kaempferol and quercetin, respectively. The results of subcellular localization studies indicated that IbFLS1 was found mainly in the nucleus and cytomembrane. Furthermore, silencing the IbFLS gene in sweet potato changed the color of the leaves to purple, substantially inhibiting the expression of IbFLS1 and upregulating the expression of genes involved in the downstream pathway of anthocyanin biosynthesis (i.e., DFR, ANS, and UFGT). The total anthocyanin content in the leaves of the transgenic plants was dramatically increased, whereas the total flavonol content was significantly reduced. Thus, we conclude that IbFLS1 is involved in the flavonol biosynthetic pathway and is a potential candidate gene of color modification in sweet potato.
Collapse
Affiliation(s)
- Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yifan Shen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| |
Collapse
|
2
|
Biochemical, Physiological, and Molecular Aspects of Ornamental Plants Adaptation to Deficit Irrigation. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is increasing concern regarding global warming and its severe impact on the farming sector and food security. Incidences of extreme weather conditions are becoming more and more frequent, posing plants to stressful conditions, such as flooding, drought, heat, or frost etc. Especially for arid lands, there is a tug-of-war between keeping high crop yields and increasing water use efficiency of limited water resources. This difficult task can be achieved through the selection of tolerant water stress species or by increasing the tolerance of sensitive species. In this scenario, it is important to understand the response of plants to water stress. So far, the response of staple foods and vegetable crops to deficit irrigation is well studied. However, there is lack of literature regarding the responses of ornamental plants to water stress conditions. Considering the importance of this ever-growing sector for the agricultural sector, this review aims to reveal the defense mechanisms and the involved morpho-physiological, biochemical, and molecular changes in ornamental plant’s responses to deficit irrigation.
Collapse
|
3
|
Hou M, Zhang Y, Mu G, Cui S, Yang X, Liu L. Molecular cloning and expression characterization of flavonol synthase genes in peanut (Arachis hypogaea). Sci Rep 2020; 10:17717. [PMID: 33077846 PMCID: PMC7572378 DOI: 10.1038/s41598-020-74763-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022] Open
Abstract
Flavonol is an important functional bioactive substance in peanut seeds, and plays important roles responding to abiotic stress. The flavonol content is closely related to the activity and regulation of gene expression patterns of flavonol synthase (FLS). In this study, eight FLS genes, AhFLSs were cloned and their expression characterization in different peanut organ and seedling under different abiotic stress were conducted. The results showed that the expressions levels of AhFLSs were differed in all assayed peanut organs and seedlings under abiotic stress treatments. Expression levels of AhFLS2, AhFLS3, AhFLS4, and AhFLS6 were higher than those of other AhFLSs. The flavonol contents of peanut organs and seedlings under different abiotic stress were also determined using high performance liquid chromatography (HPLC). Dried mature peanut seeds were the organ tissue with the highest flavonol content, and flavonol content increased with seed development. Under abiotic stress treatments, the types of flavonols induced differed among stress treatments. Correlation analysis results suggested that eight AhFLS genes may have different functions in peanut. Moreover, changes in the expression of the eight genes appear to has substrate preference. These results can lay the foundation for the study of improving nutritional value of peanut seed and resistance of peanut plant.
Collapse
Affiliation(s)
- Mingyu Hou
- College of Life Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yongjiang Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Guojun Mu
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shunli Cui
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xinlei Yang
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lifeng Liu
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China. .,State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
4
|
Xu Y, Burgess P, Huang B. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance. PLoS One 2015; 10:e0138268. [PMID: 26382960 PMCID: PMC4575078 DOI: 10.1371/journal.pone.0138268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/27/2015] [Indexed: 12/03/2022] Open
Abstract
Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems. A. scabra ‘NTAS’ and A. stolonifera ‘Penncross’ plants were exposed to heat stress (35/30°C, day/night) in growth chambers for 24 d. Superoxide (O2-) content increased in both A. stolonifera and A. scabra roots under heat stress but to a far lesser extent in A. scabra than in A. stolonifera. Hydrogen peroxide (H2O2) content increased significantly in A. stolonifera roots but not in A. scabra roots responding to heat stress. The content of antioxidant compounds (ascorbate and glutathione) did not differ between A. stolonifera and A. scabra under heat stress. Enzymatic activity of superoxide dismutase was less suppressed in A. scabra than that in A. stolonifera under heat stress, while peroxidase and catalase were more induced in A. scabra than in A. stolonifera. Similarly, their encoded transcript levels were either less suppressed, or more induced in A. scabra roots than those in A. stolonifera during heat stress. Roots of A. scabra exhibited greater alternative respiration rate and lower cytochrome respiration rate under heat stress, which was associated with suppression of O2- and H2O2 production as shown by respiration inhibitors. Superior root thermotolerance of A. scabra was related to decreases in H2O2 and O2- accumulation facilitated by active enzymatic antioxidant defense systems and the maintenance of alternative respiration, alleviating cellular damages by heat-induced oxidative stress.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, United States of America
| | - Patrick Burgess
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, United States of America
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, United States of America
- * E-mail:
| |
Collapse
|
5
|
Yan J, Wang B, Jiang Y, Cheng L, Wu T. GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. PLANT & CELL PHYSIOLOGY 2014; 55:74-86. [PMID: 24192294 DOI: 10.1093/pcp/pct159] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Flavones, a major group of flavonoids in most plant tissues, play multiple roles in plant-environment interactions. In our study, the expression of the two soybean flavone synthase genes, GmFNSII-1 and GmFNSII-2, was significantly increased by methyl jasmonate (MeJA), glucose, mannitol and NaCl treatment, which were also found to increase flavone aglycone accumulation in Glycine max (L.) Merrill. In the GmFNSII-1 promoter, a specific CGTCA motif in the region (-979 bp to -806 bp) involved in the MeJA response was identified. Promoter deletion analysis of GmFNSII-2 revealed the presence of osmotic-responsive (-1,143 bp to -767 bp) and glucose-repressive sequence elements (-767 bp to -475 bp), which strongly supported the hypothesis that glucose induces soybean flavone production by acting as both an osmotic factor and a sugar signaling molecule simultaneously. Silencing of the GmFNSII gene clearly reduced the production of flavone aglycones (apigenin, luteolin and 7,4'-dihydroxyflavone) in hairy roots. The GmFNSII-RNAi (RNA interference) roots that had a reduced level of flavones accompanied by more malondialdehyde and H2O2 accumulation were more sensitive to salt stress compared with those of the control, and we concluded that flavones, as antioxidants, are associated with salt tolerance.
Collapse
Affiliation(s)
- Junhui Yan
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Shanghai, PR China 200240
| | | | | | | | | |
Collapse
|
6
|
Redha A, Patrice S, Al-Hasan R, Afzal M. Conocarpus lancifolius biochemical responses to variable UV-B irradiation. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2012.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|