1
|
Sun Z, Liang C, Ling Y, Chen Y, Ma Z, Xu Y, Liu Z. A study on the subchronic toxicity of triclocarban to the early-life development of oryzias melastigma and focused on the analysis of osmoregulatory regulation mechanisms. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109882. [PMID: 38437996 DOI: 10.1016/j.cbpc.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation.
Collapse
Affiliation(s)
- Zhecheng Sun
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Chuan Liang
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yunzhe Ling
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yang Chen
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhengzhuo Ma
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China
| | - Zhiying Liu
- School of Environmental Science and Engineering, Nanjing tech university, Nanjing 211816, China.
| |
Collapse
|
2
|
Lin YT, Wu SY, Lee TH. Salinity effects on expression and localization of aquaporin 3 in gills of the euryhaline milkfish (Chanos chanos). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:951-960. [PMID: 37574887 DOI: 10.1002/jez.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Milkfish (Chanos chanos) are important euryhaline fish in Southeast Asian countries that can tolerate a wide range of salinity changes. Previous studies have revealed that milkfish have strong ion regulation and survival abilities under osmotic stress. In addition to ion regulation, water homeostasis in euryhaline teleosts is important during environmental salinity shifts. Aquaporins (AQP) are vital water channels in fish, and different AQPs can transport water influx or outflux from the body. AQP3 is one of the AQP channels, and the function of AQP3 in the gills of euryhaline milkfish is still unknown. The aim of this study was to investigate the expression and localization of AQP3 in the gills of euryhaline milkfish to contribute to our understanding of the physiological role and localization of AQP3 in fish. The AQP3 sequence was found in the milkfish next-generation sequencing (NGS) database and is mainly distributed in the gills of freshwater (FW)-acclimated milkfish. Under hypoosmotic and hyperosmotic stress, the osmolality of milkfish immediately shifted, similar to the aqp3 gene expression. Moreover, the abundance of AQP3 protein significantly decreased 3 h after transferring milkfish from FW to seawater (SW). However, there was no change within 7 days when the milkfish experienced hypoosmotic stress. Moreover, double immunofluorescence staining of milkfish gills showed that AQP3 colocalized with Na+ /K+ ATPase at the basolateral membrane of ionocytes. These results combined indicate that milkfish have a strong osmoregulation ability under acute osmotic stress because of the quick shift in the gene and protein expression of AQP3 in their gills.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shao-Ying Wu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Wang Q, Cui R, Liu X, Zheng X, Yao Y, Zhao G. Examining the impact of Tetragenococcus halophilus, Zygosaccharomyces rouxii, and Starmerella etchellsii on the quality of soy sauce: a comprehensive review of microbial population dynamics in fermentation. Crit Rev Food Sci Nutr 2023; 64:10873-10884. [PMID: 37395610 DOI: 10.1080/10408398.2023.2230285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Soy sauce is a popular fermented seasoning due to its distinct flavor and rich umami taste. Its traditional production involves two stages: solid-state fermentation and moromi (brine fermentation). During moromi, the dominant microbial population in the soy sauce mash changes, which is called microbial succession and is essential for the formation of soy sauce flavor compounds. Research has identified the sequence of succession, starting with Tetragenococcus halophilus, then Zygosaccharomyces rouxii, and lastly, Starmerella etchellsii. Factors such as the environment, microbial diversity, and interspecies relationships drive this process. Salt and ethanol tolerance influence microbial survival, while nutrients in the soy sauce mash support the cells in resisting external stress. Different microbial strains have varying abilities to survive and respond to external factors during fermentation, which impacts soy sauce quality. In this review, we would examine the factors behind the succession of common microbial populations in the soy sauce mash and explore how microbial succession affects soy sauce quality. The insights gained can help better manage the dynamic changes in microbes during fermentation, leading to improved production efficiency.
Collapse
Affiliation(s)
- Qifeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Rongrong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xueli Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xuelian Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
4
|
The Effect of Salinity Stress on Enzyme Activities, Histology, and Transcriptome of Silver Carp ( Hypophthalmichthys molitrix). BIOLOGY 2022; 11:biology11111580. [PMID: 36358281 PMCID: PMC9687411 DOI: 10.3390/biology11111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
A 56-day study was performed to examine the effect of freshwater (FW) and brackish water (BW 6‱ salinity) on the antioxidant ability, Na+/K+-ATPase (NKA) activities, histology, and transcriptome of the gill and kidney tissue in juvenile silver carp (Hypophthalmichthys molitrix). The results show that when juvenile silver carp were exposed to 6‱ salinity, the activities of superoxide dismutase (SOD) and catalase (CAT) were shown to be substantially increased (p < 0.05), while glutathione peroxidase (GSH-PX) activities in gill were not significantly affected (p < 0.05). In kidney tissue, SOD, CAT, and GSH-PX, enzyme activities peaked at 24, 8, and 4 h, respectively, but were not significantly different compared with the control group (p < 0.05). In addition, significant effects of salinity were observed for the NKA level in both the gills and kidney tissues (p < 0.05). The gill filaments of juvenile silver carp under the BW group all underwent adverse changes within 72 h, such as cracks and ruptures in the main part of the gill filaments, bending of the gill lamellae and enlargement of the gaps, and an increase in the number of mucus and chloride-secreting cells. Transcriptome sequencing showed 171 and 261 genes in the gill and kidney tissues of juvenile silver carp compared to the BW group, respectively. Based on their gene ontology annotations, transcripts were sorted into four functional gene groups, each of which may play a role in salt tolerance. Systems involved in these processes include metabolism, signal transduction, immunoinflammatory response, and ion transport. The above findings indicate that the regulation processes in juvenile silver carp under brackish water conditions are complex and multifaceted. These processes and mechanisms shed light on the regulatory mechanism of silver carp osmolarity and provide a theoretical foundation for future research into silver carp growth in brackish water aquaculture area.
Collapse
|
5
|
Changes in physiological activities are responsible for homoyessotoxin-induced toxicity in abalone Haliotis discus hannai. Toxicology 2022; 477:153270. [PMID: 35870676 DOI: 10.1016/j.tox.2022.153270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Homoyessotoxin (homo-YTX) is a lipid-soluble toxin produced by toxic dinoflagellates. It is widely distributed in marine ecosystems worldwide, and it poses a threat to the survival of aquatic animals. The tissues of the abalone Haliotis discus hannai are easily damaged by homo-YTX during harmful algal blooms. In this study, H. discus hannai was exposed to homo-YTX (0, 2, 5, and 10 µg L-1) to evaluate the rates of survival (S) and death (D) and the antioxidative, metabolic, and digestive physiological responses in the gills and digestive gland of abalone. Homo-YTX decreased S and the activities of Na+/K+-adenosine triphosphatase, Ca2+/Mg2+-adenosine triphosphatase, superoxide dismutase, catalase, alkaline phosphatase, xanthine oxidase, lactate dehydrogenase, amylase, protease, and lipase. Meanwhile, D, the reactive oxygen species level, and the malondialdehyde content increased with increasing concentrations of homo-YTX. In addition, homo-YTX induced oxidative stress, enhanced the lipid peroxidation reaction, reduced the energy supply, and inhibited the metabolic and digestive physiological activities in the gills and digestive gland of abalone. Oxidative stress-mediated insufficient energy supply and physiological activity reduction caused the death of abalone.
Collapse
|
6
|
Zhou K, Huang Y, Chen Z, Du X, Qin J, Wen L, Ma H, Pan X, Lin Y. Liver and spleen transcriptome reveals that Oreochromis aureus under long-term salinity stress may cause excessive energy consumption and immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 107:469-479. [PMID: 33181338 DOI: 10.1016/j.fsi.2020.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
To investigate the physiological responses of Oreochromis aureus to salinity fluctuations at the molecular level. We used RNA-seq to explore the differentially expressed genes (DEGs) in the liver and spleen of O. aureus at 0, 3, 7 and 11 ppt (parts per thousand) salinity levels. Herein, De novo assembly generated 71,009 O. aureus unigenes, of which 34,607 were successfully mapped to the four major databases. A total of 120 shared DEGs were identified in liver and spleen transcripts, of which 83 were up-regulated and 37 were down-regulated. GO and KEGG analysis found a total of 26 significant pathways, mainly including energy metabolism, immune response, ion transporters and signal transduction. The trend module category of DEGs showed that the genes (e.g., FASN, ODC1, CD22, MRC, TRAV and SLC7 family) involved in the change-stable-change (1) and the constant-change categories (2) were highly sensitive to salinity fluctuations, which were of great value for further study. Based on these results, it would help provide basic data for fish salinity acclimation, and provide new insights into evolutionary response of fish to various aquatic environments in the long-term stress adaptation mechanism.
Collapse
Affiliation(s)
- Kangqi Zhou
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yin Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Zhong Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xuesong Du
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Junqi Qin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Luting Wen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huawei Ma
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xianhui Pan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
7
|
Yao S, Zhou R, Jin Y, Zhang L, Huang J, Wu C. Co-culture with Tetragenococcus halophilus changed the response of Zygosaccharomyces rouxii to salt stress. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Immunohistochemical characterization and change in location of branchial ionocytes after transfer from freshwater to seawater in the euryhaline obscure puffer, Takifugu obscurus. J Comp Physiol B 2020; 190:585-596. [PMID: 32715333 DOI: 10.1007/s00360-020-01298-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 10/24/2022]
Abstract
The obscure puffer Takifugu obscurus is a euryhaline fish species suitable for studying the molecular mechanism of osmoregulation. The distributional changes of branchial ionocytes were detected following the transfer from freshwater (FW) to seawater (SW) based on two main ion transporters, Na+/K+-ATPase (NKA) and Na+/K+/ 2Cl- cotransporter 1 (NKCC1). The mRNA and protein expression levels of NKA and NKCC1 in the gills all increased rapidly in the first four days after transfer to SW. Double immunofluorescence staining showed that NKCC1 and NKA were colocalized in the branchial ionocytes and the immunoreaction of NKCC1 was stronger after transfer. Moreover, following transfer to SW, the number of lamellar ionocytes in the gills is reduced and the number of filament ionocytes is increased significantly. Taken together, these findings indicated that SW transfer of obscure puffer promotes the changes of distribution, function and size of branchial ionocytes.
Collapse
|
9
|
Lee SY, Lee HJ, Kim YK. Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry. Sci Rep 2020; 10:1987. [PMID: 32029805 PMCID: PMC7005315 DOI: 10.1038/s41598-020-58915-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Salmonid fishes, chum salmon (Oncorhynchus keta) have the developed adaptive strategy to withstand wide salinity changes from the early life stage. This study investigated gene expression patterns of cell membrane proteins in the gill of chum salmon fry on the transcriptome level by tracking the salinity acclimation of the fish in changing environments ranging from freshwater (0 ppt) to brackish water (17.5 ppt) to seawater (35 ppt). Using GO analysis of DEGs, the known osmoregulatory genes and their functional groups such as ion transport, transmembrane transporter activity and metal ion binding were identified. The expression patterns of membrane protein genes, including pump-mediated protein (NKA, CFTR), carrier-mediated protein (NKCC, NHE3) and channel-mediated protein (AQP) were similar to those of other salmonid fishes in the smolt or adult stages. Based on the protein-protein interaction analysis between transmembrane proteins and other related genes, we identified osmotic-related genes expressed with salinity changes and analyzed their expression patterns. The findings of this study may facilitate the disentangling of the genetic basis of chum salmon and better able an understanding of the osmophysiology of the species.
Collapse
Affiliation(s)
- Sang Yoon Lee
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hwa Jin Lee
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Yi Kyung Kim
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| |
Collapse
|
10
|
Wang D, Zhang M, Huang J, Zhou R, Jin Y, Wu C. Zygosaccharomyces rouxii Combats Salt Stress by Maintaining Cell Membrane Structure and Functionality. J Microbiol Biotechnol 2020; 30:62-70. [PMID: 31635442 PMCID: PMC9728352 DOI: 10.4014/jmb.1904.04006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/22/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Zygosaccharomyces rouxii is an important yeast that is required in the food fermentation process due to its high salt tolerance. In this study, the responses and resistance strategies of Z. rouxii against salt stress were investigated by performing physiological analysis at membrane level. The results showed that under salt stress, cell integrity was destroyed, and the cell wall was ruptured, which was accompanied by intracellular substance spillover. With an increase of salt concentrations, intracellular Na+ content increased slightly, whereas intracellular K+ content decreased significantly, which caused the increase of the intracellular Na+/K+ ratio. In addition, in response to salt stress, the activity of Na+/K+-ATPase increased from 0.54 to 2.14 μmol/mg protein, and the ergosterol content increased to 2.42-fold to maintain membrane stability. Analysis of cell membrane fluidity and fatty acid composition showed that cell membrane fluidity decreased and unsaturated fatty acid proportions increased, leading to a 101.21% rise in the unsaturated/saturated fatty acid ratio. The results presented in this study offer guidance in understanding the salt tolerance mechanism of Z. rouxii, and in developing new strategies to increase the industrial utilization of this species under salt stress.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Min Zhang
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Jun Huang
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Rongqing Zhou
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Yao Jin
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| | - Chongde Wu
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 60065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
11
|
Syandri H. Effects of Salinity on Survival and Growth of Gurami Sago (<I>Osphronemus goramy</I>, Lacepède, 1801) Juveniles. Pak J Biol Sci 2019; 21:171-178. [PMID: 30311473 DOI: 10.3923/pjbs.2018.171.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Gurami Sago Osphronemus goramy (O. goramy) are an herbivorous freshwater finfish species native in Indonesia. This species has not yet been cultured commercially in brackish water. A 60-days study was conducted to evaluate the effects of salinity on survival and growth of O. goramy. MATERIALS AND METHODS Two independent experiments were performed to determine the effects of salinity on survival and growth of juvenile O. goramy, first one was to determine the median lethal salinity (MLS-5096 h) and second one was to assess the survival and growth at different sub-lethal salinities. In MLS-5096 h study 0.0, 4.0, 8.0, 12.0 and 16.0 ppt salinities were used to initially find out the salinity tolerance range. Accordingly, a definitive salinity tolerance test was done in next phase to find out exact median lethal salinity by directly transferring the test species to 13.0, 14.0, 15.0 and 16.0 ppt salinity for 96 h. The median lethal salinity of O. goramy was estimated at 14.0 ppt. In the second experiment, survival and growth of the O. goramy were recorded at salinities 4.0, 8.0 and 12.0 ppt along with 0.0 ppt as control during 60 days. RESULTS Osigni goramy exhibited lowest final average weight at 12.0 ppt salinity and significantly highest at 4.0 ppt salinity. Highest SGR and weight gain were obtained at 4.0 ppt followed by 0 ppt, 8 ppt and 12 ppt salinity. All treatments were significantly (p<0.05). Survival rate of O. goramy varied between 76.45% (at 0.0 ppt) and 66.66% (at 12.0 ppt). CONCLUSION The O. goramy grew and survived satisfactorily at 0.0 to12.0 ppt salinities, implying that the species can be cultured commercially in brackish water, in view of in Indonesia, there are many abandoned shrimp ponds.
Collapse
|
12
|
Wang J, Hou X, Xue X, Zhu X, Chen Y, Yang Z. Interactive effects of temperature and salinity on the survival, oxidative stress, and Na +/K +-ATPase activity of newly hatched obscure puffer (Takifugu obscurus) larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:93-103. [PMID: 30094680 DOI: 10.1007/s10695-018-0537-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Obscure puffer (Takifugu obscurus) is an anadromous fish widely distributed around the coastal and inland rivers in East Asia. T. obscurus often encounters fluctuations in temperature and salinity. This study aimed to investigate the effect of the interactions of temperature and salinity on survival and oxidative stress response of newly hatched T. obscurus larvae. A combination of three temperatures (19, 25, and 31 °C) and three salinities (0, 10, and 20 ppt) was applied for 96 h under laboratory conditions. The newly hatched larvae could not tolerate 31 °C for 96 h. No death was recorded at other temperatures during this experiment. Malondialdehyde concentrations increased significantly after 6 h of exposure to high salinity (10 and 20 ppt) and then decreased until the end of the experiment at each temperature. The highest superoxide dismutase activity was observed under the exposure to 20 ppt for 24 h at 31 °C. Na+/K+-ATPase activity significantly increased as salinity increased, especially at low temperatures. With the prolong of exposure time, the integrated biomarker response (IBR) values showed an increase until 48 h and then declined at 96 h in most treatments. The largest IBR value appeared when larvae were exposed to the highest temperature and salinity for 24 h. Our study indicated that high temperature with high salinity may negatively affect the early development of T. obscurus and their combined effects should be considered in the larvae culture.
Collapse
Affiliation(s)
- Jun Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xinying Hou
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiaofeng Xue
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xuexia Zhu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
13
|
Huang X, Lan Y, Liu Z, Huang W, Guo Q, Liu L, Hu M, Sui Y, Wu F, Lu W, Wang Y. Salinity mediates the toxic effect of nano-TiO 2 on the juvenile olive flounder Paralichthys olivaceus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:726-735. [PMID: 29879661 DOI: 10.1016/j.scitotenv.2018.05.350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Increased production of engineered nanoparticles has raised extensive concern about the potential toxic effects on marine organisms living in estuarine and coastal environments. Meanwhile, salinity is one of the key environmental factors that may influence the physiological activities in flatfish species inhabiting in those waters due to fluctuations caused by freshwater input or rainfall. In this study, we investigated the oxidative stress and histopathological alteration of the juvenile Paralichthys olivaceus exposed to nano-TiO2 (1 and 10 mg L-1) under salinities of 10 and 30 psu for 4 days. In the gills, Na+-K+-ATPase activity significantly deceased after 4 days 10 psu exposure without nano-TiO2 compared with 1 day of acclimating the salinity from the normal salinity (30 psu) to 10 psu. Under this coastal salinity, low concentration (1 mg L-1) of nano-TiO2 exerted significant impacts. In the liver, the activities of superoxide dismutase, catalase, the levels of lipid peroxide and malondialdehyde increased with nano-TiO2 exposed under 30 psu. Such increase indicated an oxidative stress response. The result of the integrated biomarker responses showed that P. olivaceus can be adversely affected by high salinity and high concentration of nano-TiO2 for a short-term (4 days) exposure. The histological analysis revealed the accompanying severe damages for the gill filaments. Principal component analysis further showed that the oxidative stress was associated with the nano-TiO2 effect at normal salinity. These findings indicated that nano-TiO2 and normal salinity exert synergistic effects on juvenile P. olivaceus, and low salinity plays a protective role in its physiological state upon short-term exposure to nano-TiO2. The mechanism of salinity mediating the toxic effects of NPs on estuarine fish should be further considered.
Collapse
Affiliation(s)
- Xizhi Huang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Yawen Lan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Zekang Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Wei Huang
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography State Oceanic Administration, Hangzhou 310058, China
| | - Qindan Guo
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Liping Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Menghong Hu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Yanming Sui
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Fangli Wu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography State Oceanic Administration, Hangzhou 310058, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.
| |
Collapse
|
14
|
Yang H, Meng Y, Song Y, Tan Y, Warren A, Li J, Lin X. Salinity fluctuation influencing biological adaptation: growth dynamics and Na + /K + -ATPase activity in a euryhaline bacterium. J Basic Microbiol 2017; 57:617-624. [PMID: 28493363 DOI: 10.1002/jobm.201700124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 11/06/2022]
Abstract
Although salinity fluctuation is a prominent characteristic of many coastal ecosystems, its effects on biological adaptation have not yet been fully recognized. To test the salinity fluctuations on biological adaptation, population growth dynamics and Na+ /K+ -ATPase activity were investigated in the euryhaline bacterium Idiomarina sp. DYB, which was acclimated at different salinity exposure levels, exposure times, and shifts in direction of salinity. Results showed: (1) bacterial population growth dynamics and Na+ /K+ -ATPase activity changed significantly in response to salinity fluctuation; (2) patterns of variation in bacterial growth dynamics were related to exposure times, levels of salinity, and shifts in direction of salinity change; (3) significant tradeoffs were detected between growth rate (r) and carrying capacity (K) on the one hand, and Na+ /K+ -ATPase activity on the other; and (4) beneficial acclimation was confirmed in Idiomarina sp. DYB. In brief, this study demonstrated that salinity fluctuation can change the population growth dynamics, Na+ /K+ -ATPase activity, and tradeoffs between r, K, and Na+ /K+ -ATPase activity, thus facilitating bacterial adaption in a changing environment. These findings provide constructive information for determining biological response patterns to environmental change.
Collapse
Affiliation(s)
- Hao Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Yang Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Youxin Song
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Yalin Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jiqiu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| | - Xiaofeng Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, P. R. China
| |
Collapse
|
15
|
Wang J, Zhu X, Huang X, Gu L, Chen Y, Yang Z. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium. Sci Rep 2016; 6:30968. [PMID: 27487764 PMCID: PMC4973225 DOI: 10.1038/srep30968] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/04/2016] [Indexed: 11/21/2022] Open
Abstract
Obscure puffer Takifugu obscurus, a species of anadromous fish, experiences several salinity changes in its lifetime. Cadmium (Cd) is a toxic heavy metal that can potentially induce oxidative stress in fish. The present study aimed to detect the combined effects of Cd (0, 5, 10, 20 and 50 mg L(-1)) and salinity (0, 15 and 30 ppt) on juvenile T. obscurus. Results showed the juveniles could survive well under different salinities; however, with Cd exposure, the survival rates significantly decreased at 0 and 30 ppt. At 15 ppt, tolerance to Cd increased. Cd exposure clearly induced oxidative stress, and the responses among different tissues were qualitatively similar. Salinity acted as a protective factor which could reduce the reactive oxygen species and malondialdehyde levels. In addition, salinity could enhance the antioxidant defense system, including superoxide dismutase, catalase and glutathione. Na(+)/K(+)-ATPase activity significantly decreased under Cd exposure in gill, kidney and intestine. These findings indicated that Cd could moderate the adaptability of juvenile T. obscurus to high salinity and low salinity played a protective role upon Cd exposure. Thus, the role of salinity should be considered when evaluating the effect of heavy metals on anadromous and estuarine fishes.
Collapse
Affiliation(s)
- Jun Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xuexia Zhu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xin Huang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lei Gu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
16
|
Xu Z, Gan L, Li T, Xu C, Chen K, Wang X, Qin JG, Chen L, Li E. Transcriptome Profiling and Molecular Pathway Analysis of Genes in Association with Salinity Adaptation in Nile Tilapia Oreochromis niloticus. PLoS One 2015; 10:e0136506. [PMID: 26305564 PMCID: PMC4548949 DOI: 10.1371/journal.pone.0136506] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/04/2015] [Indexed: 12/14/2022] Open
Abstract
Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu). Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1), steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2), ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3), protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis—keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus.
Collapse
Affiliation(s)
- Zhixin Xu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Lei Gan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Tongyu Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Chang Xu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Ke Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Jian G. Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
- * E-mail: (EL); (LC)
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
- * E-mail: (EL); (LC)
| |
Collapse
|