1
|
Triest L, Satyanarayana B, Delange O, Sarker KK, Sierens T, Dahdouh-Guebas F. Barrier to Gene Flow of Grey Mangrove Avicennia marina Populations in the Malay Peninsula as Revealed From Nuclear Microsatellites and Chloroplast Haplotypes. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.727819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Contemporary mangrove forest areas took shape historically and their genetic connectivity depends on sea-faring propagules, subsequent settlement, and persistence in suitable environments. Mangrove species world-wide may experience genetic breaks caused by major land barriers or opposing ocean currents influencing their population genetic structure. For Malay Peninsula, several aquatic species showed strong genetic differentiation between East and West coast regions due to the Sunda shelf flooding since the Last Glacial Maximum. In this study genetic diversity and structure of Avicennia marina populations in Malay Peninsula were assessed using nuclear microsatellite markers and chloroplast sequences. Even though all populations showed identical morphological features of A. marina, three evolutionary significant units were obtained with nuclear and cytoplasmic markers. Avicennia marina along a 586 km stretch of the West coast differed strongly from populations along an 80 km stretch of the East coast featuring chloroplast capture of Avicennia alba in an introgressive A. marina. Over and above this expected East-West division, an intra-regional subdivision was detected among A. marina populations in the narrowest region of the Strait of Malacca. The latter genetic break was supported by an amova, structure, and barrier analysis whereas RST > FST indicated an evolutionary signal of long-lasting divergence. Two different haplotypes along the Western coast showed phylogeographic relationship with either a northern or a putative southern lineage, thereby assuming two Avicennia sources facing each other during Holocene occupation with prolonged separation in the Strait of Malacca. Migrate-n model testing supported a northward unidirectional stepping-stone migration route, although with an unclear directionality at the genetic break position, most likely due to weak oceanic currents. Low levels of genetic diversity and southward connectivity was detected for East coast Avicennia populations. We compared the fine-scale spatial genetic structure (FSGS) of Avicennia populations along the exposed coast in the East vs. the sheltered coast in the West. A majority of transects from both coastlines revealed no within-site kinship-based FSGS, although the remoteness of the open sea is important for Avicennia patches to maintain a neighborhood. The results provide new insights for mangrove researchers and managers for future in-depth ecological-genetic-based species conservation efforts in Malay Peninsula.
Collapse
|
2
|
Tang Q, Shingate P, Wardiatno Y, John A, Tay BH, Tay YC, Yap L, Lim J, Tong HY, Tun K, Venkatesh B, Rheindt FE. The different fates of two Asian horseshoe crab species with different dispersal abilities. Evol Appl 2021; 14:2124-2133. [PMID: 34429753 PMCID: PMC8372080 DOI: 10.1111/eva.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Impending anthropogenic climate change will severely impact coastal organisms at unprecedented speed. Knowledge on organisms' evolutionary responses to past sea-level fluctuations and estimation of their evolutionary potential is therefore indispensable in efforts to mitigate the effects of future climate change. We sampled tens of thousands of genomic markers of ~300 individuals in two of the four extant horseshoe crab species across the complex archipelagic Singapore Straits. Carcinoscorpius rotundicauda Latreille, a less mobile mangrove species, has finer population structure and lower genetic diversity compared with the dispersive deep-sea Tachypleus gigas Müller. Even though the source populations of both species during the last glacial maximum exhibited comparable effective population sizes, the less dispersive C. rotundicauda seems to lose genetic diversity much more quickly because of population fragmentation. Contra previous studies' results, we predict that the more commonly sighted C. rotundicauda faces a more uncertain conservation plight, with a continuing loss in evolutionary potential and higher vulnerability to future climate change. Our study provides important genomic baseline data for the redirection of conservation measures in the face of climate change and can be used as a blueprint for assessment and mitigation of the adverse effects of impending sea-level rise in other systems.
Collapse
Affiliation(s)
- Qian Tang
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Prashant Shingate
- Institute of Molecular and Cell BiologyA*STARBiopolisSingapore CitySingapore
| | | | - Akbar John
- Institute of Oceanography and Maritime Studies (INOCEM)Kulliyyah of ScienceInternational Islamic University Malaysia (IIUM)KuantanPahangMalaysia
| | - Boon Hui Tay
- Institute of Molecular and Cell BiologyA*STARBiopolisSingapore CitySingapore
| | | | - Laura‐Marie Yap
- School of Applied SciencesRepublic PolytechnicSingapore CitySingapore
| | - Jasmin Lim
- School of Applied SciencesRepublic PolytechnicSingapore CitySingapore
| | | | | | - Byrappa Venkatesh
- Institute of Molecular and Cell BiologyA*STARBiopolisSingapore CitySingapore
| | - Frank E. Rheindt
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
3
|
Guo W, Banerjee AK, Wu H, Ng WL, Feng H, Qiao S, Liu Y, Huang Y. Contrasting Phylogeographic Patterns in Lumnitzera Mangroves Across the Indo-West Pacific. FRONTIERS IN PLANT SCIENCE 2021; 12:637009. [PMID: 34249031 PMCID: PMC8261646 DOI: 10.3389/fpls.2021.637009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
Mangroves are ecologically important forest communities in tropical and subtropical coasts, the effective management of which requires understanding of their phylogeographic patterns. However, these patterns often vary among different species, even among ecologically similar taxa or congeneric species. Here, we investigated the levels and patterns of genetic variation within Lumnitzera consisting of two species (L. racemosa and L. littorea) with nearly sympatric ranges across the Indo-West Pacific (IWP) region by sequencing three chloroplast DNA regions (for both species) and genotyping 11 nuclear microsatellite loci (for L. littorea). Consistent with findings in studies on other mangrove species, we found that both L. racemosa and L. littorea showed relatively high genetic variation among populations but low genetic variation within populations. Haplotype network and genetic clustering analyses indicated two well-differentiated clades in both L. racemosa and L. littorea. The relationship between geographic and genetic distances and divergence time estimates of the haplotypes indicated that limited dispersal ability of the propagules, emergence of land barriers during ancient sea-level changes, and contemporary oceanic circulation pattern in the IWP influenced the current population structure of the two species. However, the position of genetic break was found to vary between the two species: in L. racemosa, strong divergence was observed between populations from the Indian Ocean and the Pacific Ocean possibly due to land barrier effect of the Malay Peninsula; in L. littorea, the phylogeographic pattern was created by a more eastward genetic break along the biogeographic barrier identified as the Huxley's line. Overall, our findings strongly supported previous hypothesis of mangrove species divergence and revealed that the two Lumnitzera species have different phylogeographic patterns despite their close genetic relationship and similar current geographic distribution. The findings also provided references for the management of Lumnitzera mangroves, especially for the threatened L. littorea.
Collapse
Affiliation(s)
- Wuxia Guo
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haidan Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sitan Qiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Mat Zauki NA, Satyanarayana B, Fairuz-Fozi N, Nelson BR, Martin MB, Akbar-John B, Chowdhury AJK. Citizen science frontiers horseshoe crab population regain at their spawning beach in East Peninsular Malaysia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:1012-1020. [PMID: 33395753 DOI: 10.1016/j.jenvman.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/28/2018] [Accepted: 12/02/2018] [Indexed: 06/12/2023]
Abstract
Carcinoscorpius rotundicauda and Tachypleus gigas may co-exist and share common spawning grounds elsewhere but at Balok (East Coast of Peninsular Malaysia), C. rotundicauda is an understudied species. Neglected as research candidate because of inaccessible spawning grounds, smaller size and less commercial value than T. gigas and also, difficulty to attain from the wild has made C. rotundicauda population status remaining unidentified at Balok. This standpoint drove the present attempt because anthropic activities like structure placement and mining are point-source for runoffs that load sediments into Balok River. While erosion-accretion events have altered Balok River width, the shore sediments in Balok Beach were transitioned between medium-fine and fine sand between years 2012 and 2016. Eventually by year 2016, the C. rotundicauda were depositing 5117 eggs in 91 nests from 200 to 1000 m range along this corridor facing South China Sea. From this yield, C. rotundicauda released 2880 eggs in 56 nests during the Southwest monsoon, 1254 eggs in 19 nests during the Northeast monsoon and 983 eggs in 16 nests during the Inter-monsoon seasons. Though female C. rotundicauda opted to lay their eggs in shallow burrows at lower shorelines, the absence of erosion and substantial silt and clay (>20%) deposition facilitates C. rotundicauda embryogenesis with brief periods of temperature and salinity shocks during day-time falling tides. This encourages C. rotundicauda to emerge with increasing abundance and carry out bi-monthly spawning at Balok Beach. In short, shore restoration initiatives like systematic boat docking, proper disposal of nets and waste and, periodic fish-catching operations were effectively led by the Balok fisher citizen scientist. This successful community joint-cooperation proves that citizen-led caretaking of degraded beaches offers marine life protection and are practical for coastal area management especially at areas where other oviparous animals such as turtles and crocodiles are harboured.
Collapse
Affiliation(s)
- Nurul Ashikin Mat Zauki
- Mangrove Research Unit, Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Behara Satyanarayana
- Mangrove Research Unit, Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Nur Fairuz-Fozi
- Mangrove Research Unit, Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Bryan Raveen Nelson
- Institute of Tropical Biodiversity and Sustainable Development (ITBSD), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Melissa Beata Martin
- School of Marine and Environmental Sciences (PPSMS), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Bavajohn Akbar-John
- Institute of Oceanography and Maritime Studies (INOCEM), Kulliyyah of Science, International Islamic University Malaysia Kuantan, Jalan Sultan Ahmad Shah, 25200 Kuantan, Malaysia
| | - Ahmed Jalal Khan Chowdhury
- Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia Kuantan, Jalan Sultan Ahmad Shah, 25200, Kuantan, Malaysia
| |
Collapse
|
5
|
Carcinoscorpius rotundicauda (Latreille, 1802) population status and spawning behaviour at Pendas coast, Peninsular Malaysia. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|