1
|
Comparison of Juvenile, Drought Tolerant Black Locust (Robinia pseudoacacia L.) Clones with Regard to Plant Physiology and Growth Characteristics in Eastern Hungary: Early Evaluation. FORESTS 2022. [DOI: 10.3390/f13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(1) Background: The aim of our study is to present the results of initial growth and plant physiology studies of newly selected, vegetative propagated black locust clones, with a view to assess their suitability for the establishment of fast growing tree plantations for the production of high quality timber in marginal (semi-arid) sites. (2) Methods: In the spring (May) and autumn (November) of 2021, full inventories were carried out in the black locust industrial tree plantation. The Normalized Difference Vegetation Index (NDVI) values were observed monthly from May to September 2021. For measuring the assimilation parameters the net assimilation, transpiration, stomatal conductance, intercellular CO2 concentration, and other physiological parameters were recorded. (3) Results: Robinia pseudoacacia ‘NK2′ clone showed the highest assimilation rate and it produced the most height increment in the growing season, from May 2021 to November 2021. The discriminant analysis classified successfully the black locust clones, 86.7% of original grouped cases were correctly classified. (4) Conclusions: The study of industrial tree plantations is of great practical importance. As black locust can tolerate even marginal site conditions, the lack of timber can be reduced in the future by establishing black locust industrial tree plantations. To be able to produce good quality industrial wood on the plantations, it is essential to study the phytophysiological properties of the trees (biomass production, vegetation activity of plants, chlorophyll content, photosynthetic activity) in addition to the traditional stand full inventories.
Collapse
|
2
|
Peng W, Ma NL, Zhang D, Zhou Q, Yue X, Khoo SC, Yang H, Guan R, Chen H, Zhang X, Wang Y, Wei Z, Suo C, Peng Y, Yang Y, Lam SS, Sonne C. A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. ENVIRONMENTAL RESEARCH 2020; 191:110046. [PMID: 32841638 DOI: 10.1016/j.envres.2020.110046] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Locusts differ from ordinary grasshoppers in their ability to swarm over long distances and are among the oldest migratory pests. The ecology and biology of locusts make them among the most devastating pests worldwide and hence the calls for actions to prevent the next outbreaks. The most destructive of all locust species is the desert locust (Schistocerca gregaria). Here, we review the current locust epidemic 2020 outbreak and its causes and prevention including the green technologies that may provide a reference for future directions of locust control and food security. Massive locust outbreaks threaten the terrestrial environments and crop production in around 100 countries of which Ethiopia, Somalia and Kenya are the most affected. Six large locust outbreaks are reported for the period from 1912 to 1989 all being closely related to long-term droughts and warm winters coupled with occurrence of high precipitation in spring and summer. The outbreaks in East Africa, India and Pakistan are the most pronounced with locusts migrating more than 150 km/day during which the locusts consume food equivalent to their own body weight on a daily basis. The plague heavily affects the agricultural sectors, which is the foundation of national economies and social stability. Global warming is likely the main cause of locust plague outbreak in recent decades driving egg spawning of up to 2-400,000 eggs per square meter. Biological control techniques such as microorganisms, insects and birds help to reduce the outbreaks while reducing ecosystem and agricultural impacts. In addition, green technologies such as light and sound stimulation seem to work, however, these are challenging and need further technological development incorporating remote sensing and modelling before they are applicable on large-scales. According to the Food and Agriculture Organization (FAO) of the United Nations, the 2020 locust outbreak is the worst in 70 years probably triggered by climate change, hurricanes and heavy rain and has affected a total of 70,000 ha in Somalia and Ethiopia. There is a need for shifting towards soybean, rape, and watermelon which seems to help to prevent locust outbreaks and obtain food security. Furthermore, locusts have a very high protein content and is an excellent protein source for meat production and as an alternative human protein source, which should be used to mitigate food security. In addition, forestation of arable land improves local climate conditions towards less precipitation and lower temperatures while simultaneously attracting a larger number of birds thereby increasing the locust predation rates.
Collapse
Affiliation(s)
- Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Nyuk Ling Ma
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quan Zhou
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaochen Yue
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shing Ching Khoo
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huiling Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaofan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yacheng Wang
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zihan Wei
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chaofan Suo
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuhao Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| |
Collapse
|