1
|
Abid A, Wafa Z, Belguidoum M, Touahria T, Mekhadmi NE, Dekmouche M, Bechki L, Bireche K, Boussebaa W, Al-Farga A. Exploring the anti-inflammatory, sedative, antidiabetic, and antioxidant potential in in-vitro and in-vivo models and phenolic profiling of Atractylis aristata Batt. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118252. [PMID: 38663782 DOI: 10.1016/j.jep.2024.118252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylis aristata batt., as an endemic plant from the Asteraceae family, holds a significant position in the Ahaggar region of southern Algeria's traditional medicine. The aerial parts of Atractylis aristata was used to cure inflammation, fever, and stomach disorders. AIM OF THE STUDY The objective of the present investigation was to ascertain the overall bioactive components and phytochemical components and examine the antioxidant, antidiabetic, anti-inflammatory, acute toxicity, and sedative properties of the crude extract obtained from the aerial portions of Atractylis aristata (AaME). MATERIALS AND METHODS The AaME's antioxidant activity was assessed by the use of pyrogallol autoxidation, (1,1 diphenyl-2-picrylhydrazyl) (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and reducing power (RP) techniques. 1 mg/mL of AaME was used to evaluate the antidiabetic activity by applying the enzyme α-amylase inhibitory power test. At the same time, the bovine serum albumin (BSA) denaturation method was employed to quantify the in vitro anti-inflammatory activity at different concentrations (1.5625, 0.78125, 0.390625, 0.1953125 and 0.09765625 mg/mL). In contrast, following the Organization for Economic Co-operation and Development (OECD) guideline No. 423, which covers acute oral toxicity testing protocols, the limit dosage test was employed to assess in vivo acute toxicity. At the dose of 0.08 mg/mL, the carrageenan-induced paw edema approach was used to assess the anti-inflammatory efficacy in vivo, and the sedative activity was carried out at the dose of 0.08 mg/mL using the measurement of the locomotor method. Different bioactive compounds were identified within AaME using LC-MS/MS and HPLC-UV analysis. RESULTS The acute toxicity study showed no fatalities or noticeable neurobehavioral consequences at the limit test; this led to their classification in Globally Harmonized System (GHS) category Five, as the OECD guideline No 423 recommended. At a concentration of 0.08 mg/mL (2000 mg/kg), AaME showed apparent inhibition of paw edema and a significant (p = 0.01227) reduction in locomotor activity compared to the control animals. Our findings showed that AaME exhibited considerable antioxidant (IC50 = 0.040 ± 0.003 mg/mL (DPPH), IC50 = 0.005 ± 5.77 × 10-5 mg/mL (ABTS), AEAC = 91.15 ± 3.921 mg (RP) and IR% = 23.81 ± 4.276 (Inhibition rate of pyrogallol) and rebuts antidiabetic activities (I% = 57.6241% ± 2.81772). Our findings revealed that the maximum percentage of BSA inhibition (70.84 ± 0.10%) was obtained at 1.562.5 mg/mL. Thus, the AaME phytochemical profile performed using phytochemical screening, HPLC-UV, and LC-MS/MS analysis demonstrated that A. aristata can be a valuable source of chemicals with biological activity for pharmaceutical manufacturers. CONCLUSION The phytochemical profiling, determined through HPLC-UV and LC-MS/MS applications, reveals this plant's therapeutic value. The aerial parts of Atractylis aristata contain bioactive molecules such as gallic acid, ascorbic acid, and quercetin, contributing to its significant antioxidant capabilities. Furthermore, identifying alizarin, the active compound responsible for its anti-inflammatory properties, could provide evidence supporting the anti-inflammatory capabilities of this subspecies.
Collapse
Affiliation(s)
- Asma Abid
- Laboratory of Valorization and Promotion of Saharan Resources (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria
| | - Zahnit Wafa
- Laboratory of Valorization and Promotion of Saharan Resources (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria.
| | - Mahdi Belguidoum
- Laboratory of Valorization and Promotion of Saharan Resources (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria; Department of Agronomy, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, 47000, Ghardaïa, Algeria
| | - Tatou Touahria
- Laboratory of Valorization and Promotion of Saharan Resources (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria
| | - Nour Elhouda Mekhadmi
- Department of Biology, SNV Faculty, University of Chahid Hamma Lakhdar, El-Oued, Algeria; Laboratory of Biodiversity and Applications of Biotechnology in the Agriculture Field, University of Chahid Hamma Lakhdar, El-Oued, Algeria
| | - Messaouda Dekmouche
- Laboratory of Valorization and Promotion of Saharan Resources (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria
| | - Lazhar Bechki
- Laboratory of Valorization and Promotion of Saharan Resources (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria
| | - Kamilia Bireche
- Laboratory of Valorization and Promotion of Saharan Resources (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria
| | - Walid Boussebaa
- Laboratory of Valorization and Promotion of Saharan Resources (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria; Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), Tipaza, Algeria
| | - Ammar Al-Farga
- Department of Biochemistry, Faculty of Science University of Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Shi P, Chen J, Ge W, Liu Z, Han N, Yin J. Antichilblain Components in Eggplant Based on Network Pharmacology and Biological Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37467304 DOI: 10.1021/acs.jafc.3c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Eggplant, the fruit of Solanum melongena L. (Solanaceae), is applied externally to relieve the symptoms of chilblains in the folk in East Asia. However, the mechanisms and biological ingredients are not clear. A network pharmacology approach was used to shed light on the mechanisms of eggplant against chilblains, which illustrated that anti-inflammation and antioxidation are mainly involved in the curative effects. Bioassay-guided assays led to the isolation of 44 ingredients (1-44), including two new natural compounds (1-2) and 42 known compounds. Thirteen compounds (3-15) were first reported from the Solanum genus. The anti-inflammatory and antioxidative effects of all isolates were evaluated, and the results showed that 11 compounds have anti-inflammatory activity and 27 have antioxidant activity. Fatty acids, flavonoids, alkaloids, phenolic acids, saponins, and lignans from eggplant have certain anti-inflammatory and antioxidant effects. These results provide a scientific basis for eggplant to treat chilblains.
Collapse
Affiliation(s)
- Peixin Shi
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Chen
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiying Ge
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Wang LX, Wang HL, Huang J, Chu TZ, Peng C, Zhang H, Chen HL, Xiong YA, Tan YZ. Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications. PHYTOCHEMISTRY 2022; 202:113326. [PMID: 35842031 DOI: 10.1016/j.phytochem.2022.113326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Lignans, with various biological activities, such as antitumor, antioxidant, antibacterial, and antiviral activities, are widely distributed in nature and mainly exist in the xylem of plants. In this paper, we summarized the structures and bioactivities of lignans reported in recent years (2019-2021) from five parts, including (1) a summary and classification of newly reported compounds; (2) the pharmacological activities of lignans; (3) molecular resources and activity distribution; (4) the structure-activity relationships; and (5) the clinical application of lignans. This review covers all undescribed compounds that were reported within the covered period of time and all bioactivity data about previously isolated lignans. The distribution of lignans in different plants and families is visualized, which improves the efficiency of searching for specific molecules. The diverse activities of different types of lignans provide an important reference for the rapid screening of these compounds. Discussion about the structure-activity relationships of lignans provides a direction for the structural modification of skeleton molecules. Combined with the clinical application of such molecules, this work will provide a valuable reference for pharmaceutical chemists.
Collapse
Affiliation(s)
- Li-Xia Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Liang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao Huang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tian-Zhe Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hai Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hu-Lan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong-Ai Xiong
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Yu-Zhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|