1
|
Mould-Quevedo JF, Pelton SI, Nguyen VH. Vaccine Effectiveness of Cell-Based Quadrivalent Influenza Vaccine in Children: A Narrative Review. Vaccines (Basel) 2023; 11:1594. [PMID: 37896996 PMCID: PMC10610859 DOI: 10.3390/vaccines11101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Cell-based manufacturing of seasonal influenza vaccines eliminates the risk of egg-adaptation of candidate vaccine viruses, potentially increasing vaccine effectiveness (VE). We present an overview of published data reporting the VE and cost-effectiveness of a cell-based quadrivalent influenza vaccine (QIVc) in preventing influenza-related outcomes in the pediatric population. We identified 16 clinical studies that included data on the VE of a QIVc or the relative VE (rVE) of a QIVc versus an egg-based QIV (QIVe) in children and/or adolescents, 11 of which presented estimates specifically for the pediatric age group. Of these, two studies reported rVE against hospitalizations. Point estimates of rVE varied from 2.1% to 33.0%, with studies reporting significant benefits of using a QIVc against influenza-related, pneumonia, asthma, and all-cause hospitalization. Four studies reported rVE against influenza-related medical encounters, with point estimates against non-strain specific encounters ranging from 3.9% to 18.8% across seasons. One study evaluated rVE against any influenza, with variable results by strain. The other four studies presented VE data against laboratory-confirmed influenza. Three health economics studies focusing on a pediatric population also found the use of QIVc to be cost-effective or cost-saving. Overall, using a QIVc is effective in pediatric patients, with evidence of incremental benefits over using a QIVe in preventing hospitalizations and influenza-related medical encounters in nearly all published studies.
Collapse
Affiliation(s)
| | - Stephen I. Pelton
- Chobanian and Avedesian School of Medicine, Boston University, Boston, MA 02118, USA;
| | | |
Collapse
|
2
|
Rozek W, Kwasnik M, Socha W, Sztromwasser P, Rola J. Analysis of Single Nucleotide Variants (SNVs) Induced by Passages of Equine Influenza Virus H3N8 in Embryonated Chicken Eggs. Viruses 2021; 13:v13081551. [PMID: 34452416 PMCID: PMC8402691 DOI: 10.3390/v13081551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination is an effective method for the prevention of influenza virus infection. Many manufacturers use embryonated chicken eggs (ECE) for the propagation of vaccine strains. However, the adaptation of viral strains during subsequent passages can lead to additional virus evolution and lower effectiveness of the resulting vaccines. In our study, we analyzed the distribution of single nucleotide variants (SNVs) of equine influenza virus (EIV) during passaging in ECE. Viral RNA from passage 0 (nasal swabs), passage 2 and 5 was sequenced using next generation technology. In total, 50 SNVs with an occurrence frequency above 2% were observed, 29 of which resulted in amino acid changes. The highest variability was found in passage 2, with the most variable segment being IV encoding hemagglutinin (HA). Three variants, HA (W222G), PB2 (A377E) and PA (R531K), had clearly increased frequency with the subsequent passages, becoming dominant. None of the five nonsynonymous HA variants directly affected the major antigenic sites; however, S227P was previously reported to influence the antigenicity of EIV. Our results suggest that although host-specific adaptation was observed in low passages of EIV in ECE, it should not pose a significant risk to influenza vaccine efficacy.
Collapse
Affiliation(s)
- Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
- Correspondence:
| | - Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Pawel Sztromwasser
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland;
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| |
Collapse
|
3
|
Genetic Characteristics of Avian Influenza Virus Isolated from Wild Birds in South Korea, 2019-2020. Viruses 2021; 13:v13030381. [PMID: 33673635 PMCID: PMC7997295 DOI: 10.3390/v13030381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Wild aquatic birds, a natural reservoir of avian influenza viruses (AIVs), transmit AIVs to poultry farms, causing huge economic losses. Therefore, the prevalence and genetic characteristics of AIVs isolated from wild birds in South Korea from October 2019 to March 2020 were investigated and analyzed. Fresh avian fecal samples (3256) were collected by active monitoring of 11 wild bird habitats. Twenty-eight AIVs were isolated. Seven HA and eight NA subtypes were identified. All AIV hosts were Anseriformes species. The HA cleavage site of 20 representative AIVs was encoded by non-multi-basic amino acid sequences. Phylogenetic analysis of the eight segment genes of the AIVs showed that most genes clustered within the Eurasian lineage. However, the HA gene of H10 viruses and NS gene of four viruses clustered within the American lineage, indicating intercontinental reassortment of AIVs. Representative viruses likely to infect mammals were selected and evaluated for pathogenicity in mice. JB21-58 (H5N3), JB42-93 (H9N2), and JB32-81 (H11N2) were isolated from the lungs, but JB31-69 (H11N9) was not isolated from the lungs until the end of the experiment at 14 dpi. None of infected mice showed clinical sign and histopathological change in the lung. In addition, viral antigens were not detected in lungs of all mice at 14 dpi. These data suggest that LPAIVs derived from wild birds are unlikely to be transmitted to mammals. However, because LPAIVs can reportedly infect mammals, including humans, continuous surveillance and monitoring of AIVs are necessary, despite their low pathogenicity.
Collapse
|
4
|
Liu WJ, Li J, Zou R, Pan J, Jin T, Li L, Liu P, Zhao Y, Yu X, Wang H, Liu G, Jiang H, Bi Y, Liu L, Yuen KY, Liu Y, Gao GF. Dynamic PB2-E627K substitution of influenza H7N9 virus indicates the in vivo genetic tuning and rapid host adaptation. Proc Natl Acad Sci U S A 2020; 117:23807-23814. [PMID: 32873642 PMCID: PMC7519270 DOI: 10.1073/pnas.2013267117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Avian-origin influenza viruses overcome the bottleneck of the interspecies barrier and infect humans through the evolution of variants toward more efficient replication in mammals. The dynamic adaptation of the genetic substitutions and the correlation with the virulence of avian-origin influenza virus in patients remain largely elusive. Here, based on the one-health approach, we retrieved the original virus-positive samples from patients with H7N9 and their surrounding poultry/environment. The specimens were directly deep sequenced, and the subsequent big data were integrated with the clinical manifestations. Unlike poultry/environment-derived samples with the consistent dominance of avian signature 627E of H7N9 polymerase basic protein 2 (PB2), patient specimens had diverse ratios of mammalian signature 627K, indicating the rapid dynamics of H7N9 adaptation in patients during the infection process. In contrast, both human- and poultry/environment-related viruses had constant dominance of avian signature PB2-701D. The intrahost dynamic adaptation was confirmed by the gradual replacement of 627E by 627K in H7N9 in the longitudinally collected specimens from one patient. These results suggest that host adaptation for better virus replication to new hosts, termed "genetic tuning," actually occurred in H7N9-infected patients in vivo. Notably, our findings also demonstrate the correlation between rapid host adaptation of H7N9 PB2-E627K and the fatal outcome and disease severity in humans. The feature of H7N9 genetic tuning in vivo and its correlation with the disease severity emphasize the importance of testing for the evolution of this avian-origin virus during the course of infection.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Jun Li
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Tao Jin
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | | | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Guang Liu
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | - Hui Jiang
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases and the HKU-Shenzhen Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China;
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China;
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
5
|
Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020; 11:1100. [PMID: 32582186 PMCID: PMC7297083 DOI: 10.3389/fimmu.2020.01100] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) have been shown to be strong activators of dendritic cells (DCs). DCs are the most potent antigen presenting cells (APCs) and their activation prompts the priming of immunity mediators based on B and T cells. The first step for the activation of DCs is the binding of VLPs to pattern recognition receptors (PRRs) on the surface of DCs, followed by VLP internalization. Like wild-type viruses, VLPs use specific PRRs from the DC; however, these recognition interactions between VLPs and PRRs from DCs have not been thoroughly reviewed. In this review, we focused on the interaction between proteins that form VLPs and PRRs from DCs. Several proteins that form VLP contain glycosylations that allow the direct interaction with PRRs sensing carbohydrates, prompting DC maturation and leading to the development of strong adaptive immune responses. We also discussed how the knowledge of the molecular interaction between VLPs and PRRs from DCs can lead to the smart design of VLPs, whether based on the fusion of foreign epitopes or their chemical conjugation, as well as other modifications that have been shown to induce a stronger adaptive immune response and protection against infectious pathogens of importance in human and veterinary medicine. Finally, we address the use of VLPs as tools against cancer and allergic diseases.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|