1
|
Ullah MM, Ow CPC, Evans RG, Hilliard Krause LM. Impact of choice of kinetic model for the determination of transcutaneous FITC-sinistrin clearance in rats with streptozotocin-induced type 1 diabetes. Clin Exp Pharmacol Physiol 2020; 47:1158-1168. [PMID: 32160333 DOI: 10.1111/1440-1681.13301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022]
Abstract
Transcutaneous assessment of fluorescein isothiocyanate (FITC)-sinistrin clearance using an optical device was recently validated for determination of glomerular filtration rate (GFR) in conscious animals. In the current study, we compared four available kinetic models for calculating FITC-sinistrin clearance, to provide further insight into whether the choice of model might influence findings generated using this device. Specifically, we calculated the excretion half-life of FITC-sinistrin (minutes), rate constant (minute-1 ) and GFR indexed to bodyweight in control rats and rats with streptozotocin-induced diabetes across a 4-week experimental period using standard one-compartment (1-COM), two-compartment (2-COM) and three-compartment (3-COM) kinetic models (1-COM), and a three-compartment kinetic model with baseline correction (3-COMB). Glomerular hyperfiltration was detected in STZ-induced diabetic rats with the 2-COM or 3-COMB at day 14 and with the 3-COM at day 3 and 14 after induction of diabetes, but not at any time point using the 1-COM. From a theoretical perspective, we reasoned that the 3-COMB model provides a better estimate of t1/2 than the other models. Linear regression analysis of data generated using the 3-COMB showed a significant relationship between blood glucose and calculated GFR at the day 14 (P = .004) and day 28 (P = .01) time points, and a strong tendency for a relationship at the day 3 time point (P = .06). We conclude that hyperfiltration is an early and sustained characteristic of STZ-induced diabetes in rats. Furthermore, we propose that the 3-COMB model provides the most valid t1/2 for estimation of GFR via transcutaneous detection of FITC-sinistrin clearance.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Connie P C Ow
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Roger G Evans
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
2
|
Steiger S, Grill JF, Ma Q, Bäuerle T, Jordan J, Smolle M, Böhland C, Lech M, Anders HJ. Anti-Transforming Growth Factor β IgG Elicits a Dual Effect on Calcium Oxalate Crystallization and Progressive Nephrocalcinosis-Related Chronic Kidney Disease. Front Immunol 2018; 9:619. [PMID: 29651290 PMCID: PMC5884871 DOI: 10.3389/fimmu.2018.00619] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
Crystallopathies are a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring. Certain proteins interfere with crystal formation and growth, e.g., with intrarenal calcium oxalate (CaOx) crystal formation, a common cause of kidney stone disease or nephrocalcinosis-related chronic kidney disease (CKD). We hypothesized that immunoglobulins can modulate CaOx microcrystal formation and crystal growth and that therefore, biological IgG-based drugs designed to specifically target disease modifying proteins would elicit a dual effect on the outcome of CaOx-related crystallopathies. Indeed, both the anti-transforming growth factor (TGF)β IgG and control IgG1 antibody impaired CaOx crystallization in vitro, and decreased intrarenal CaOx crystal deposition and subsequent CKD in mice on an oxalate-rich diet compared to oxalate-fed control mice. However, the TGFβ-specific IgG antibody showed nephroprotective effects beyond those of control IgG1 and substantially reduced interstitial fibrosis as indicated by magnetic resonance imaging, silver and α-smooth muscle actin staining, RT-qPCR, and flow cytometry for pro-fibrotic macrophages. Suppressing interstitial fibrosis slowed the decline of glomerular filtration rate (GFR) compared to treatment with control IgG1 [slope of m = −8.9 vs. m = −14.5 μl/min/100 g body weight (BW)/day, Δ = 38.3%], an increased GFR at the end of the study (120.4 vs. 42.6 μl/min/100 g BW, Δ = 64.6%), and prolonged end stage renal disease (ESRD)-free renal survival by 10 days (Δ = 38.5%). Delayed onset of anti-TGFβ IgG from day 7 was no longer effective. Our results suggest that biological drugs can elicit dual therapeutic effects on intrinsic crystallopathies, such as anti-TGFβ IgG antibody treatment inhibits CaOx crystallization as well as interstitial fibrosis in nephrocalcinosis-related CKD.
Collapse
Affiliation(s)
- Stefanie Steiger
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Julia Felicitas Grill
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Qiuyue Ma
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jutta Jordan
- Preclinical Imaging Platform Erlangen, Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Smolle
- Ludwig-Maximilians Universität München, Biomedizinisches Centrum, Munich, Germany
| | - Claudia Böhland
- Department of Radiation Oncology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Maciej Lech
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
3
|
Huang J, Weinfurter S, Pinto PC, Pretze M, Kränzlin B, Pill J, Federica R, Perciaccante R, Ciana LD, Masereeuw R, Gretz N. Fluorescently Labeled Cyclodextrin Derivatives as Exogenous Markers for Real-Time Transcutaneous Measurement of Renal Function. Bioconjug Chem 2016; 27:2513-2526. [DOI: 10.1021/acs.bioconjchem.6b00452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiaguo Huang
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Stefanie Weinfurter
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Pedro Caetano Pinto
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Marc Pretze
- Molecular
Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear
Medicine, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Bettina Kränzlin
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Johannes Pill
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | | | - Rosalinde Masereeuw
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Norbert Gretz
- Medical
Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Improved kinetic model for the transcutaneous measurement of glomerular filtration rate in experimental animals. Kidney Int 2016; 90:1377-1385. [PMID: 27665115 DOI: 10.1016/j.kint.2016.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
Transcutaneous measurement of the glomerular filtration rate (tGFR) is now frequently used in animal studies. tGFR allows consecutive measurements on the same animal, including multiple measurements on a daily basis, because no blood sampling is required. Here we derive and validate a novel kinetic model for the description of transcutaneously measured FITC-Sinistrin excretion kinetics. In contrast to standard 1- to 3-compartment models, our model covers the complete kinetic, including injection and distribution of the tracer in the plasma compartment. Because the model describes the complete progression of the measurement, it allows further refinement by correcting for baseline shifts observed occasionally during measurement. Possible reasons for shifts in the background signal include photo bleaching of the skin, autofluorescence, changes of physiological state of the animals during the measurements, or effects arising from the attachment of the measurement device. Using the new 3-compartment kinetic model with modulated baseline (tGFR3cp.b.m), tGFR measurements in rats can reach comparable precision as those from GFR measurements assessed using a gold standard technique based on constant infusion of a tracer. Moreover, the variability of simultaneous (parallel) measurements, as well as repeated tGFR measurements in the same animals, showed higher precision when tGFR3cp.b.m was compared with the 1-compartment tGFR1cp model.
Collapse
|
5
|
|
6
|
Shmarlouski A, Schock-Kusch D, Shulhevich Y, Buschmann V, Rohlicke T, Herdt D, Radle M, Hesser J, Stsepankou D. A Novel Analysis Technique for Transcutaneous Measurement of Glomerular Filtration Rate With Ultralow Dose Marker Concentrations. IEEE Trans Biomed Eng 2015; 63:1742-50. [PMID: 26595905 DOI: 10.1109/tbme.2015.2501544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE A novel high-precision approach [lifetime-decomposition measurement (LTDM)] for the assessment of the glomerular filtration rate (GFR) based on clearance measurements of exogenous filtration marker. METHODS The time-correlated single photon counting (TCSPC) acquisition in combination with a new decomposition method allows the separation of signal and background from transcutaneous measurements of GFR. RESULTS The performance of LTDM is compared versus the commercially available NIC-kidney patch-based system for transcutaneous GFR measurement. Measurements are performed in awake Sprague Dawley (SD) rats. Using the standard concentration required for the NIC-kidney system [7-mg/100-g body weight (b.w.) FITC-Sinistrin] as reference, the mean difference (bias) of the elimination curves GFR between LTDM and NIC-kidney was 4.8%. On the same animal and same day, the capability of LTDM to measure GFR with a FITC-Sinistrin dose reduced by a factor of 200 (35-μg/100-g b.w.) was tested as well. The mean differences (half lives with low dose using LTDM compared with those using first, the NIC-Kidney system and its standard concentration, and second, LTDM with the same concentration as for the NIC-Kidney system) were 3.4% and 4.5%, respectively. CONCLUSION We demonstrate that with the LTDM strategy substantial reductions in marker concentrations are possible at the same level of accuracy. SIGNIFICANCE LTDM aims to resolve the issue of the currently necessary large doses of fluorescence tracer required for transcutaneous GFR measurement. Due to substantially less influences from autofluorescence and artifacts, the proposed method outperforms other existing techniques for accurate percutaneous organ function measurement.
Collapse
|
7
|
Ellery SJ, Cai X, Walker DD, Dickinson H, Kett MM. Transcutaneous measurement of glomerular filtration rate in small rodents: Through the skin for the win? Nephrology (Carlton) 2015; 20:117-23. [DOI: 10.1111/nep.12363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre; MIMR-PHI Institute of Medical Research; Melbourne Victoria Australia
- Department of Obstetrics and Gynaecology; Monash University, Monash Medical Centre; Melbourne Victoria Australia
| | - Xiaochu Cai
- Department of Physiology; Monash University, Clayton Campus; Melbourne Victoria Australia
| | - David D Walker
- The Ritchie Centre; MIMR-PHI Institute of Medical Research; Melbourne Victoria Australia
- Department of Obstetrics and Gynaecology; Monash University, Monash Medical Centre; Melbourne Victoria Australia
| | - Hayley Dickinson
- The Ritchie Centre; MIMR-PHI Institute of Medical Research; Melbourne Victoria Australia
- Department of Obstetrics and Gynaecology; Monash University, Monash Medical Centre; Melbourne Victoria Australia
| | - Michelle M Kett
- Department of Physiology; Monash University, Clayton Campus; Melbourne Victoria Australia
| |
Collapse
|