1
|
Sánchez J, Martín-Landrove M. Multifractal Analysis of Brain Tumor Interface in Glioblastoma. ADVANCES IN NEUROBIOLOGY 2024; 36:487-499. [PMID: 38468049 DOI: 10.1007/978-3-031-47606-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The dynamics of tumor growth is a very complex process, generally accompanied by numerous chromosomal aberrations that determine its genetic and dynamical heterogeneity. Consequently, the tumor interface exhibits a non-regular and heterogeneous behavior often described by a single fractal dimension. A more suitable approach is to consider the tumor interface as a multifractal object that can be described by a set of generalized fractal dimensions. In the present work, detrended fluctuation and multifractal analysis are used to characterize the complexity of glioblastoma.
Collapse
Affiliation(s)
- Jacksson Sánchez
- Faculty of Science and Technology, Physics Department, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, Dominican Republic
| | - Miguel Martín-Landrove
- Centre for Medical Visualization, National Institute for Bioengineering, INABIO, Universidad Central de Venezuela and Centro de Diagnóstico Docente Las Mercedes, Caracas, Venezuela.
| |
Collapse
|
2
|
Guan S, Jiang R, Chen DY, Michael A, Meng C, Biswal B. Multifractal long-range dependence pattern of functional magnetic resonance imaging in the human brain at rest. Cereb Cortex 2023; 33:11594-11608. [PMID: 37851793 DOI: 10.1093/cercor/bhad393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Long-range dependence is a prevalent phenomenon in various biological systems that characterizes the long-memory effect of temporal fluctuations. While recent research suggests that functional magnetic resonance imaging signal has fractal property, it remains unknown about the multifractal long-range dependence pattern of resting-state functional magnetic resonance imaging signals. The current study adopted the multifractal detrended fluctuation analysis on highly sampled resting-state functional magnetic resonance imaging scans to investigate long-range dependence profile associated with the whole-brain voxels as specific functional networks. Our findings revealed the long-range dependence's multifractal properties. Moreover, long-term persistent fluctuations are found for all stations with stronger persistency in whole-brain regions. Subsets with large fluctuations contribute more to the multifractal spectrum in the whole brain. Additionally, we found that the preprocessing with band-pass filtering provided significantly higher reliability for estimating long-range dependence. Our validation analysis confirmed that the optimal pipeline of long-range dependence analysis should include band-pass filtering and removal of daily temporal dependence. Furthermore, multifractal long-range dependence characteristics in healthy control and schizophrenia are different significantly. This work has provided an analytical pipeline for the multifractal long-range dependence in the resting-state functional magnetic resonance imaging signal. The findings suggest differential long-memory effects in the intrinsic functional networks, which may offer a neural marker finding for understanding brain function and pathology.
Collapse
Affiliation(s)
- Sihai Guan
- College of Electronic and Information, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu 610041, China
| | - Runzhou Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Medical Equipment Department, Xiangyang No.1 People's Hospital, Xiangyang 441000, China
| | - Donna Y Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Andrew Michael
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27708, United States
| | - Chun Meng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bharat Biswal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
3
|
Kaplan E, Chan WY, Altinsoy HB, Baygin M, Barua PD, Chakraborty S, Dogan S, Tuncer T, Acharya UR. PFP-HOG: Pyramid and Fixed-Size Patch-Based HOG Technique for Automated Brain Abnormality Classification with MRI. J Digit Imaging 2023; 36:2441-2460. [PMID: 37537514 PMCID: PMC10584767 DOI: 10.1007/s10278-023-00889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Detecting neurological abnormalities such as brain tumors and Alzheimer's disease (AD) using magnetic resonance imaging (MRI) images is an important research topic in the literature. Numerous machine learning models have been used to detect brain abnormalities accurately. This study addresses the problem of detecting neurological abnormalities in MRI. The motivation behind this problem lies in the need for accurate and efficient methods to assist neurologists in the diagnosis of these disorders. In addition, many deep learning techniques have been applied to MRI to develop accurate brain abnormality detection models, but these networks have high time complexity. Hence, a novel hand-modeled feature-based learning network is presented to reduce the time complexity and obtain high classification performance. The model proposed in this work uses a new feature generation architecture named pyramid and fixed-size patch (PFP). The main aim of the proposed PFP structure is to attain high classification performance using essential feature extractors with both multilevel and local features. Furthermore, the PFP feature extractor generates low- and high-level features using a handcrafted extractor. To obtain the high discriminative feature extraction ability of the PFP, we have used histogram-oriented gradients (HOG); hence, it is named PFP-HOG. Furthermore, the iterative Chi2 (IChi2) is utilized to choose the clinically significant features. Finally, the k-nearest neighbors (kNN) with tenfold cross-validation is used for automated classification. Four MRI neurological databases (AD dataset, brain tumor dataset 1, brain tumor dataset 2, and merged dataset) have been utilized to develop our model. PFP-HOG and IChi2-based models attained 100%, 94.98%, 98.19%, and 97.80% using the AD dataset, brain tumor dataset1, brain tumor dataset 2, and merged brain MRI dataset, respectively. These findings not only provide an accurate and robust classification of various neurological disorders using MRI but also hold the potential to assist neurologists in validating manual MRI brain abnormality screening.
Collapse
Affiliation(s)
- Ela Kaplan
- Department of Radiology, Elazig Fethi Sekin City Hospital, Elazig, Turkey
| | - Wai Yee Chan
- Imaging Department, Gleneagles Hospital Kuala Lumpur, Jalan Ampang, Kampung Berembang, 50450, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Hasan Baki Altinsoy
- Department of Radiology, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Mehmet Baygin
- Department of Computer Engineering, College of Engineering, Erzurum Technical University, Erzurum, Turkey
| | - Prabal Datta Barua
- School of Business (Information System), University of Southern Queensland, Springfield, Australia
| | - Subrata Chakraborty
- Faculty of Science, Agriculture, Business and Law, School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
- Center for Advanced Modelling and Geospatial Information Systems, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sengul Dogan
- Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey.
| | - Turker Tuncer
- Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
4
|
Battalapalli D, Vidyadharan S, Prabhakar Rao BVVSN, Yogeeswari P, Kesavadas C, Rajagopalan V. Fractal dimension: analyzing its potential as a neuroimaging biomarker for brain tumor diagnosis using machine learning. Front Physiol 2023; 14:1201617. [PMID: 37528895 PMCID: PMC10390093 DOI: 10.3389/fphys.2023.1201617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose: The main purpose of this study was to comprehensively investigate the potential of fractal dimension (FD) measures in discriminating brain gliomas into low-grade glioma (LGG) and high-grade glioma (HGG) by examining tumor constituents and non-tumorous gray matter (GM) and white matter (WM) regions. Methods: Retrospective magnetic resonance imaging (MRI) data of 42 glioma patients (LGG, n = 27 and HGG, n = 15) were used in this study. Using MRI, we calculated different FD measures based on the general structure, boundary, and skeleton aspects of the tumorous and non-tumorous brain GM and WM regions. Texture features, namely, angular second moment, contrast, inverse difference moment, correlation, and entropy, were also measured in the tumorous and non-tumorous regions. The efficacy of FD features was assessed by comparing them with texture features. Statistical inference and machine learning approaches were used on the aforementioned measures to distinguish LGG and HGG patients. Results: FD measures from tumorous and non-tumorous regions were able to distinguish LGG and HGG patients. Among the 15 different FD measures, the general structure FD values of enhanced tumor regions yielded high accuracy (93%), sensitivity (97%), specificity (98%), and area under the receiver operating characteristic curve (AUC) score (98%). Non-tumorous GM skeleton FD values also yielded good accuracy (83.3%), sensitivity (100%), specificity (60%), and AUC score (80%) in classifying the tumor grades. These measures were also found to be significantly (p < 0.05) different between LGG and HGG patients. On the other hand, among the 25 texture features, enhanced tumor region features, namely, contrast, correlation, and entropy, revealed significant differences between LGG and HGG. In machine learning, the enhanced tumor region texture features yielded high accuracy, sensitivity, specificity, and AUC score. Conclusion: A comparison between texture and FD features revealed that FD analysis on different aspects of the tumorous and non-tumorous components not only distinguished LGG and HGG patients with high statistical significance and classification accuracy but also provided better insights into glioma grade classification. Therefore, FD features can serve as potential neuroimaging biomarkers for glioma.
Collapse
Affiliation(s)
- Dheerendranath Battalapalli
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Sreejith Vidyadharan
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - B. V. V. S. N. Prabhakar Rao
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - P. Yogeeswari
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - C. Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Venkateswaran Rajagopalan
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| |
Collapse
|
5
|
Multiclass convolutional neural network based classification for the diagnosis of brain MRI images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Investigating the Impact of Two Major Programming Environments on the Accuracy of Deep Learning-Based Glioma Detection from MRI Images. Diagnostics (Basel) 2023; 13:diagnostics13040651. [PMID: 36832138 PMCID: PMC9955350 DOI: 10.3390/diagnostics13040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Brain tumors have been the subject of research for many years. Brain tumors are typically classified into two main groups: benign and malignant tumors. The most common tumor type among malignant brain tumors is known as glioma. In the diagnosis of glioma, different imaging technologies could be used. Among these techniques, MRI is the most preferred imaging technology due to its high-resolution image data. However, the detection of gliomas from a huge set of MRI data could be challenging for the practitioners. In order to solve this concern, many Deep Learning (DL) models based on Convolutional Neural Networks (CNNs) have been proposed to be used in detecting glioma. However, understanding which CNN architecture would work efficiently under various conditions including development environment or programming aspects as well as performance analysis has not been studied so far. In this research work, therefore, the purpose is to investigate the impact of two major programming environments (namely, MATLAB and Python) on the accuracy of CNN-based glioma detection from Magnetic Resonance Imaging (MRI) images. To this end, experiments on the Brain Tumor Segmentation (BraTS) dataset (2016 and 2017) consisting of multiparametric magnetic MRI images are performed by implementing two popular CNN architectures, the three-dimensional (3D) U-Net and the V-Net in the programming environments. From the results, it is concluded that the use of Python with Google Colaboratory (Colab) might be highly useful in the implementation of CNN-based models for glioma detection. Moreover, the 3D U-Net model is found to perform better, attaining a high accuracy on the dataset. The authors believe that the results achieved from this study would provide useful information to the research community in their appropriate implementation of DL approaches for brain tumor detection.
Collapse
|
7
|
Integrating convolutional neural networks, kNN, and Bayesian optimization for efficient diagnosis of Alzheimer's disease in magnetic resonance images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Xu Y, Liu J, Sun Y, Chen S, Miao X. Fast detection of volatile fatty acids in biogas slurry using NIR spectroscopy combined with feature wavelength selection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159282. [PMID: 36209878 DOI: 10.1016/j.scitotenv.2022.159282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
To analyze the state of anaerobic digestion (AD), fast detection models of volatile fatty acids (VFAs) were constructed using near-infrared transmission spectroscopy combined with partial least squares regression to measure concentrations of the acetic acid (AA), propionic acid (PA) and total acid (TA) in biogas slurry. CARS-SA-BPSO algorithm was proposed based on competitive adaptive reweighted sampling (CARS) and simulated annealing binary particle swarm optimization algorithm (SA-BPSO) for selecting feature wavelengths of the AA, PA and TA. Regression models were established with the determination coefficient of prediction (Rp2) of 0.989, root mean squared error of prediction (RMSEP) of 0.111 and residual predictive deviation (RPD) of 9.706 for AA; Rp2 of 0.932, RMSEP of 0.116 and RPD of 3.799 for PA; Rp2 of 0.895, RMSEP of 0.689 and RPD of 3.676 for TA. It is sufficient to meet the fast detection needs of the AA and PA concentrations in biogas slurry, and basically meet the measuring demand of the TA concentration. CARS-SA-BPSO effectively improves the performance of the calibration model using sensitive wavelength selections, which provides theoretical support for establishing the spectral quantitative regression model to meet the requirements of practical application.
Collapse
Affiliation(s)
- Yonghua Xu
- College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
| | - Jinming Liu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Shaopeng Chen
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xinying Miao
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Lahmiri S, Tadj C, Gargour C. Nonlinear Statistical Analysis of Normal and Pathological Infant Cry Signals in Cepstrum Domain by Multifractal Wavelet Leaders. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1166. [PMID: 36010830 PMCID: PMC9407617 DOI: 10.3390/e24081166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/06/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Multifractal behavior in the cepstrum representation of healthy and unhealthy infant cry signals is examined by means of wavelet leaders and compared using the Student t-test. The empirical results show that both expiration and inspiration signals exhibit clear evidence of multifractal properties under healthy and unhealthy conditions. In addition, expiration and inspiration signals exhibit more complexity under healthy conditions than under unhealthy conditions. Furthermore, distributions of multifractal characteristics are different across healthy and unhealthy conditions. Hence, this study improves the understanding of infant crying by providing a complete description of its intrinsic dynamics to better evaluate its health status.
Collapse
Affiliation(s)
- Salim Lahmiri
- Department of Supply Chain and Business Technology Management, John Molson School of Business, Concordia University, Montreal, QC H3G 1M8, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - Chakib Tadj
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - Christian Gargour
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| |
Collapse
|
10
|
Arora S, Mathur T, Agarwal S, Tiwari K, Gupta P. Applications of fractional calculus in computer vision: A survey. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.10.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Kouli O, Hassane A, Badran D, Kouli T, Hossain-Ibrahim K, Steele JD. Automated brain tumour identification using magnetic resonance imaging: a systematic review and meta-analysis. Neurooncol Adv 2022; 4:vdac081. [PMID: 35769411 PMCID: PMC9234754 DOI: 10.1093/noajnl/vdac081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Automated brain tumor identification facilitates diagnosis and treatment planning. We evaluate the performance of traditional machine learning (TML) and deep learning (DL) in brain tumor detection and segmentation, using MRI. Methods A systematic literature search from January 2000 to May 8, 2021 was conducted. Study quality was assessed using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Detection meta-analysis was performed using a unified hierarchical model. Segmentation studies were evaluated using a random effects model. Sensitivity analysis was performed for externally validated studies. Results Of 224 studies included in the systematic review, 46 segmentation and 38 detection studies were eligible for meta-analysis. In detection, DL achieved a lower false positive rate compared to TML; 0.018 (95% CI, 0.011 to 0.028) and 0.048 (0.032 to 0.072) (P < .001), respectively. In segmentation, DL had a higher dice similarity coefficient (DSC), particularly for tumor core (TC); 0.80 (0.77 to 0.83) and 0.63 (0.56 to 0.71) (P < .001), persisting on sensitivity analysis. Both manual and automated whole tumor (WT) segmentation had “good” (DSC ≥ 0.70) performance. Manual TC segmentation was superior to automated; 0.78 (0.69 to 0.86) and 0.64 (0.53 to 0.74) (P = .014), respectively. Only 30% of studies reported external validation. Conclusions The comparable performance of automated to manual WT segmentation supports its integration into clinical practice. However, manual outperformance for sub-compartmental segmentation highlights the need for further development of automated methods in this area. Compared to TML, DL provided superior performance for detection and sub-compartmental segmentation. Improvements in the quality and design of studies, including external validation, are required for the interpretability and generalizability of automated models.
Collapse
Affiliation(s)
- Omar Kouli
- School of Medicine, University of Dundee , Dundee UK
- NHS Greater Glasgow and Clyde , Dundee UK
| | | | | | - Tasnim Kouli
- School of Medicine, University of Dundee , Dundee UK
| | | | - J Douglas Steele
- Division of Imaging Science and Technology, School of Medicine, University of Dundee , UK
| |
Collapse
|
12
|
Improving geometric P-norm-based glioma segmentation through deep convolutional autoencoder encapsulation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Abstract
AbstractBrain tumor occurs owing to uncontrolled and rapid growth of cells. If not treated at an initial phase, it may lead to death. Despite many significant efforts and promising outcomes in this domain, accurate segmentation and classification remain a challenging task. A major challenge for brain tumor detection arises from the variations in tumor location, shape, and size. The objective of this survey is to deliver a comprehensive literature on brain tumor detection through magnetic resonance imaging to help the researchers. This survey covered the anatomy of brain tumors, publicly available datasets, enhancement techniques, segmentation, feature extraction, classification, and deep learning, transfer learning and quantum machine learning for brain tumors analysis. Finally, this survey provides all important literature for the detection of brain tumors with their advantages, limitations, developments, and future trends.
Collapse
|
14
|
Goswami M. Deep learning models for benign and malign ocular tumor growth estimation. Comput Med Imaging Graph 2021; 93:101986. [PMID: 34509705 DOI: 10.1016/j.compmedimag.2021.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
Relatively abundant availability of medical imaging data has provided significant support in the development and testing of Neural Network based image processing methods. Clinicians often face issues in selecting suitable image processing algorithm for medical imaging data. A strategy for the selection of a proper model is presented here. The training data set comprises optical coherence tomography (OCT) and angiography (OCT-A) images of 50 mice eyes with more than 100 days follow-up. The data contains images from treated and untreated mouse eyes. Four deep learning variants are tested for automatic (a) differentiation of tumor region with healthy retinal layer and (b) segmentation of 3D ocular tumor volumes. Exhaustive sensitivity analysis of deep learning models is performed with respect to the number of training and testing images using eight performance indices to study accuracy, reliability/reproducibility, and speed. U-net with UVgg16 is best for malign tumor data set with treatment (having considerable variation) and U-net with Inception backbone for benign tumor data (with minor variation). Loss value and root mean square error (R.M.S.E.) are found most and least sensitive performance indices, respectively. The performance (via indices) is found to be exponentially improving regarding a number of training images. The segmented OCT-Angiography data shows that neovascularization drives the tumor volume. Image analysis shows that photodynamic imaging-assisted tumor treatment protocol is transforming an aggressively growing tumor into a cyst. An empirical expression is obtained to help medical professionals choose a particular model given the number of images and types of characteristics. We recommend that the presented exercise should be taken as standard practice before employing a particular deep learning model for biomedical image analysis.
Collapse
Affiliation(s)
- Mayank Goswami
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
15
|
Ma M, Tian X, Chen F, Ma X, Guo W, Lv X. The application of feature engineering in establishing a rapid and robust model for identifying patients with glioma. Lasers Med Sci 2021; 37:1007-1015. [PMID: 34241708 DOI: 10.1007/s10103-021-03346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022]
Abstract
The aim of the study is to evaluate the efficacy of the combination of Raman spectroscopy with feature engineering and machine learning algorithms for detecting glioma patients. In this study, we used Raman spectroscopy technology to collect serum spectra of glioma patients and healthy people and used feature engineering-based classification models for prediction. First, to reduce the dimensionality of the data, we used two feature extraction algorithms which are partial least squares (PLS) and principal component analysis (PCA). Then, the principal components were selected using the feature selection methods of four correlation indexes, namely, Relief-F (RF), the Pearson correlation coefficient (PCC), the F-score (FS) and term variance (TV). Finally, back-propagation neural network (BP), linear discriminant analysis (LDA) and support vector machine (SVM) classification models were established. To improve the reliability of the model, we used a fivefold cross validation to measure the prediction performance between different models. In this experiment, 33 classification models were established. Integrating 4 classification criteria, PLS-Relief-F-BP, PLS-F-Score-BP, PLS-LDA and PLS-Relief-F-SVM had better effects, and their accuracy rates reached 97.58%, 96.33%, 97.87% and 96.19%, respectively. The experimental results show that feature engineering can select more representative features, reduce computational time complexity and simplify the model. The classification model established in this experiment can not only increase the robustness of the model and shorten the discrimination time but also realize the rapid, stable and accurate diagnosis of glioma patients, which has high clinical application value.
Collapse
Affiliation(s)
- Mingrui Ma
- Department of Information Management, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xuecong Tian
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Fangfang Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, 830046, China
| | - Xiaojian Ma
- Department of Information Management, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Wenjia Guo
- Institute of Cancer, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi, 830046, China.
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
16
|
An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network. COMPLEX INTELL SYST 2021. [DOI: 10.1007/s40747-021-00310-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractBrain tumor is a group of anomalous cells. The brain is enclosed in a more rigid skull. The abnormal cell grows and initiates a tumor. Detection of tumor is a complicated task due to irregular tumor shape. The proposed technique contains four phases, which are lesion enhancement, feature extraction and selection for classification, localization, and segmentation. The magnetic resonance imaging (MRI) images are noisy due to certain factors, such as image acquisition, and fluctuation in magnetic field coil. Therefore, a homomorphic wavelet filer is used for noise reduction. Later, extracted features from inceptionv3 pre-trained model and informative features are selected using a non-dominated sorted genetic algorithm (NSGA). The optimized features are forwarded for classification after which tumor slices are passed to YOLOv2-inceptionv3 model designed for the localization of tumor region such that features are extracted from depth-concatenation (mixed-4) layer of inceptionv3 model and supplied to YOLOv2. The localized images are passed toMcCulloch'sKapur entropy method to segment actual tumor region. Finally, the proposed technique is validated on three benchmark databases BRATS 2018, BRATS 2019, and BRATS 2020 for tumor detection. The proposed method achieved greater than 0.90 prediction scores in localization, segmentation and classification of brain lesions. Moreover, classification and segmentation outcomes are superior as compared to existing methods.
Collapse
|
17
|
Lu S, Wang SH, Zhang YD. Detecting pathological brain via ResNet and randomized neural networks. Heliyon 2020; 6:e05625. [PMID: 33305056 PMCID: PMC7711146 DOI: 10.1016/j.heliyon.2020.e05625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/01/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023] Open
Abstract
Brain disease is one of the leading causes of death nowadays. Medical imaging is the most effective method for brain disease diagnosis, which provides a clear view of the interior brain. However, manual interpretation requires too much time and effort because medical images contain a large volume of information. Computer aided diagnosis is playing a more and more significant role in the clinic, which can help doctors and physicians to analyze medical images automatically. In this study, a novel pathological brain detection system was proposed for brain magnetic resonance images based on ResNet and randomized neural networks. Firstly, a ResNet was employed as the feature extractor, which was a famous convolutional neural network structure. Then, we used three randomized neural networks, i.e., the Schmidt neural network, the random vector functional-link net, and the extreme learning machine. The weights and biases in the three networks were trained by the chaotic bat algorithm. The three proposed methods achieved similar results based on five runs, and they yielded comparable performance in comparison with state-of-the-art approaches.
Collapse
Affiliation(s)
- Siyuan Lu
- School of Informatics, University of Leicester, Leicester, LE1 7RH, UK
| | - Shui-Hua Wang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Corresponding author.
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Corresponding author.
| |
Collapse
|
18
|
Soleimani M, Vahidi A, Vaseghi B. Two-Dimensional Stockwell Transform and Deep Convolutional Neural Network for Multi-Class Diagnosis of Pathological Brain. IEEE Trans Neural Syst Rehabil Eng 2020; 29:163-172. [PMID: 33237865 DOI: 10.1109/tnsre.2020.3040627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since the brain lesion detection and classification is a vital diagnosis task, in this paper, the problem of brain magnetic resonance imaging (MRI) classification is investigated. Recent advantages in machine learning and deep learning allows the researchers to develop the robust computer-aided diagnosis (CAD) tools for classification of brain lesions. Feature extraction is an essential step in any machine learning scheme. Time-frequency analysis methods provide localized information that makes them more attractive for image classification applications. Owing to the advantages of two-dimensional discrete orthonormal Stockwell transform (2D DOST), we propose to use it to extract the efficient features from brain MRIs and obtain the feature matrix. Since there are some irrelevant features, two-directional two-dimensional principal component analysis ((2D)2PCA) is used to reduce the dimension of the feature matrix. Finally, convolution neural networks (CNNs) are designed and trained for MRI classification. Simulation results indicate that the proposed CAD tool outperforms the recently introduced ones and can efficiently diagnose the MRI scans.
Collapse
|
19
|
Ghasemi M, Kelarestaghi M, Eshghi F, Sharifi A. AFDL: a new adaptive fuzzy dictionary learning for medical image classification. Pattern Anal Appl 2020. [DOI: 10.1007/s10044-020-00909-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Particle Swarm Optimization Based Swarm Intelligence for Active Learning Improvement: Application on Medical Data Classification. Cognit Comput 2020. [DOI: 10.1007/s12559-020-09739-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Afzali A, Babapour Mofrad F, Pouladian M. Contour-based lung shape analysis in order to tuberculosis detection: modeling and feature description. Med Biol Eng Comput 2020; 58:1965-1986. [PMID: 32572669 DOI: 10.1007/s11517-020-02192-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/18/2020] [Indexed: 11/26/2022]
Abstract
Statistical shape analysis of lung is a reliable alternative method for diagnosing pulmonary diseases such as tuberculosis (TB). The 2D contour-based lung shape analysis is investigated and developed using Fourier descriptors (FDs). The proposed 2D lung shape analysis is carried out in threefold: (1) represent the normal and the abnormal (i.e. pulmonary tuberculosis (PTB)) lung shape models using Fourier descriptors modeling (FDM) framework from chest X-ray (CXR) images, (2) estimate and compare the 2D inter-patient lung shape variations for the normal and abnormal lungs by applying principal component analysis (PCA) techniques, and (3) describe the optimal type of contour-based feature vectors to train a classifier in order to detect TB using one publicly available dataset-namely the Montgomery dataset. Since almost all of the previous works in lung shape analysis are content-based analysis, we proposed contour-based lung shape analysis for statistical modeling and feature description of PTB cases. The results show that the proposed approach is able to explain more than 95% of total variations in both of the normal and PTB cases using only 6 and 7 principal component modes for the right and the left lungs, respectively. In case of PTB detection, using 138 lung cases (80 normal and 58 PTB cases), we achieved the accuracy (ACC) and the area under the curve (AUC) of 82.03% and 88.75%, respectively. In comparison with existing state-of-art studies in the same dataset, the proposed approach is a very promising supplement for diagnosis of PTB disease. The method is robust and valuable for application in 2D automatic segmentation, classification, and atlas registration. Moreover, the approach could be used for any kind of pulmonary diseases. Graphical abstract Contour-based lung shape analysis in order to detect tuberculosis: modeling and feature description.
Collapse
Affiliation(s)
- Ali Afzali
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Babapour Mofrad
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Majid Pouladian
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
FDSR: A new fuzzy discriminative sparse representation method for medical image classification. Artif Intell Med 2020; 106:101876. [PMID: 32593393 DOI: 10.1016/j.artmed.2020.101876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Recent developments in medical image analysis techniques make them essential tools in medical diagnosis. Medical imaging is always involved with different kinds of uncertainties. Managing these uncertainties has motivated extensive research on medical image classification methods, particularly for the past decade. Despite being a powerful classification tool, the sparse representation suffers from the lack of sufficient discrimination and robustness, which are required to manage the uncertainty and noisiness in medical image classification issues. It is tried to overcome this deficiency by introducing a new fuzzy discriminative robust sparse representation classifier, which benefits from the fuzzy terms in its optimization function of the dictionary learning process. In this work, we present a new medical image classification approach, fuzzy discriminative sparse representation (FDSR). The proposed fuzzy terms increase the inter-class representation difference and the intra-class representation similarity. Also, an adaptive fuzzy dictionary learning approach is used to learn dictionary atoms. FDSR is applied on Magnetic Resonance Images (MRI) from three medical image databases. The comprehensive experimental results clearly show that our approach outperforms its series of rival techniques in terms of accuracy, sensitivity, specificity, and convergence speed.
Collapse
|
24
|
Image Segmentation of Brain MRI Based on LTriDP and Superpixels of Improved SLIC. Brain Sci 2020; 10:brainsci10020116. [PMID: 32093401 PMCID: PMC7071465 DOI: 10.3390/brainsci10020116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/03/2022] Open
Abstract
Non-uniform gray distribution and blurred edges often result in bias during the superpixel segmentation of medical images of magnetic resonance imaging (MRI). To this end, we propose a novel superpixel segmentation algorithm by integrating texture features and improved simple linear iterative clustering (SLIC). First, a 3D histogram reconstruction model is used to reconstruct the input image, which is further enhanced by gamma transformation. Next, the local tri-directional pattern descriptor is used to extract texture features of the image; this is followed by an improved SLIC superpixel segmentation. Finally, a novel clustering-center updating rule is proposed, using pixels with gray difference with original clustering centers smaller than a predefined threshold. The experiments on the Whole Brain Atlas (WBA) image database showed that, compared to existing state-of-the-art methods, our superpixel segmentation algorithm generated significantly more uniform superpixels, and demonstrated the performance accuracy of the superpixel segmentation in both fuzzy boundaries and fuzzy regions.
Collapse
|
25
|
Yin B, Wang C, Abza F. New brain tumor classification method based on an improved version of whale optimization algorithm. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101728] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Amin J, Sharif M, Gul N, Yasmin M, Shad SA. Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2019.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Stratified squamous epithelial biopsy image classifier using machine learning and neighborhood feature selection. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
28
|
Sharif M, Amin J, Nisar MW, Anjum MA, Muhammad N, Ali Shad S. A unified patch based method for brain tumor detection using features fusion. COGN SYST RES 2020. [DOI: 10.1016/j.cogsys.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Gong S, Gao W, Abza F. Brain tumor diagnosis based on artificial neural network and a chaos whale optimization algorithm. Comput Intell 2019. [DOI: 10.1111/coin.12259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shu Gong
- Department of Computer ScienceGuangdong University Science and Technology Dongguan China
| | - Wei Gao
- School of Information Science and TechnologyYunnan Normal University Kunming China
| | - Francis Abza
- Department of Computer ScienceUniversity of Ghana Legon‐Accra Ghana
| |
Collapse
|
30
|
Multi-channeled MR brain image segmentation: A new automated approach combining BAT and clustering technique for better identification of heterogeneous tumors. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2019.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
A review on brain tumor segmentation of MRI images. Magn Reson Imaging 2019; 61:247-259. [DOI: 10.1016/j.mri.2019.05.043] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023]
|
32
|
Chatterjee S, Dey D, Munshi S, Gorai S. Extraction of features from cross correlation in space and frequency domains for classification of skin lesions. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.101581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer’s disease. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Khan MA, Lali IU, Rehman A, Ishaq M, Sharif M, Saba T, Zahoor S, Akram T. Brain tumor detection and classification: A framework of marker-based watershed algorithm and multilevel priority features selection. Microsc Res Tech 2019; 82:909-922. [PMID: 30801840 DOI: 10.1002/jemt.23238] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 08/25/2024]
Abstract
Brain tumor identification using magnetic resonance images (MRI) is an important research domain in the field of medical imaging. Use of computerized techniques helps the doctors for the diagnosis and treatment against brain cancer. In this article, an automated system is developed for tumor extraction and classification from MRI. It is based on marker-based watershed segmentation and features selection. Five primary steps are involved in the proposed system including tumor contrast, tumor extraction, multimodel features extraction, features selection, and classification. A gamma contrast stretching approach is implemented to improve the contrast of a tumor. Then, segmentation is done using marker-based watershed algorithm. Shape, texture, and point features are extracted in the next step and high ranked 70% features are only selected through chi-square max conditional priority features approach. In the later step, selected features are fused using a serial-based concatenation method before classifying using support vector machine. All the experiments are performed on three data sets including Harvard, BRATS 2013, and privately collected MR images data set. Simulation results clearly reveal that the proposed system outperforms existing methods with greater precision and accuracy.
Collapse
Affiliation(s)
- Muhammad A Khan
- Department of Computer Science and Engineering, HITEC University Museum Road, Taxila, Pakistan
| | - Ikram U Lali
- Department of Computer Science, University of Gujrat, Gujrat, Pakistan
| | - Amjad Rehman
- College of Business Administration, Al Yamamah University, Riyadh 11512, Saudi Arabia
| | - Mubashar Ishaq
- Department of Computer Science, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Cantt, Pakistan
| | - Tanzila Saba
- College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Saliha Zahoor
- Department of Computer Science, University of Gujrat, Gujrat, Pakistan
| | - Tallha Akram
- Department of EE, COMSATS University Islamabad, Wah Cantt, Pakistan
| |
Collapse
|
35
|
Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.08.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
A fractal based approach to evaluate the progression of esophageal squamous cell dysplasia. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Ayadi W, Elhamzi W, Charfi I, Atri M. A hybrid feature extraction approach for brain MRI classification based on Bag-of-words. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Sert E, Avci D. Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.08.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Kaushal M, Khehra BS, Sharma A. Soft Computing based object detection and tracking approaches: State-of-the-Art survey. Appl Soft Comput 2018. [DOI: 10.1016/j.asoc.2018.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
40
|
|
41
|
Luján E, Soto D, Rosito MS, Soba A, Guerra LN, Calvo JC, Marshall G, Suárez C. Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by in vitro studies. Integr Biol (Camb) 2018; 10:325-334. [PMID: 29741547 DOI: 10.1039/c8ib00049b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mathematical modelling approaches have become increasingly abundant in cancer research. Tumour infiltration extent and its spatial organization depend both on the tumour type and stage and on the bio-physicochemical characteristics of the microenvironment. This sets a complex scenario that often requires a multidisciplinary and individually adjusted approach. The ultimate goal of this work is to present an experimental/numerical combined method for the development of a three-dimensional mathematical model with the ability to reproduce the growth and infiltration patterns of a given avascular microtumour in response to different microenvironmental conditions. The model is based on a diffusion-convection reaction equation that considers logistic proliferation, volumetric growth, a rim of proliferative cells at the tumour surface, and invasion with diffusive and convective components. The parameter values of the model were fitted to experimental results while radial velocity and diffusion coefficients were made spatially variable in a case-specific way through the introduction of a shape function and a diffusion-limited-aggregation (DLA)-derived fractal matrix, respectively, according to the infiltration pattern observed. The in vitro model consists of multicellular tumour spheroids (MTSs) of an epithelial mammary tumour cell line (LM3) immersed in a collagen I gel matrix with a standard culture medium ("naive" matrix) or a conditioned medium from adipocytes or preadipocytes ("conditioned" matrix). It was experimentally determined that both adipocyte and preadipocyte conditioned media had the ability to change the MTS infiltration pattern from collective and laminar to an individual and atomized one. Numerical simulations were able to adequately reproduce qualitatively and quantitatively both kinds of infiltration patterns, which were determined by area quantification, analysis of fractal dimensions and lacunarity, and Bland-Altman analysis. These results suggest that the combined approach presented here could be established as a new framework with interesting potential applications at both the basic and clinical levels in the oncology area.
Collapse
Affiliation(s)
- Emmanuel Luján
- Laboratorio de Sistemas Complejos, Instituto de Física del Plasma, CONICET-UBA, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ayalapogu RR, Pabboju S, Ramisetty RR. Analysis of dual tree M-band wavelet transform based features for brain image classification. Magn Reson Med 2018; 80:2393-2401. [PMID: 29707806 DOI: 10.1002/mrm.27210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE The most complex organ in the human body is the brain. The unrestrained growth of cells in the brain is called a brain tumor. The cause of a brain tumor is still unknown and the survival rate is lower than other types of cancers. Hence, early detection is very important for proper treatment. METHODS In this study, an efficient computer-aided diagnosis (CAD) system is presented for brain image classification by analyzing MRI of the brain. At first, the MRI brain images of normal and abnormal categories are modeled by using the statistical features of dual tree m-band wavelet transform (DTMBWT). A maximum margin classifier, support vector machine (SVM) is then used for the classification and validated with k-fold approach. RESULTS Results show that the system provides promising results on a repository of molecular brain neoplasia data (REMBRANDT) with 97.5% accuracy using 4th level statistical features of DTMBWT. CONCLUSION Viewing the experimental results, we conclude that the system gives a satisfactory performance for the brain image classification.
Collapse
Affiliation(s)
| | - Suresh Pabboju
- Department of Information Technology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India
| | - Rajeswara Rao Ramisetty
- Jawaharal Nehru Technological University, University College of Engineering Vizianagaram, Andhra Pradesh, India
| |
Collapse
|
43
|
An accurate system to distinguish between normal and abnormal electroencephalogram records with epileptic seizure free intervals. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Chatterjee S, Dey D, Munshi S. Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Mohan G, Subashini MM. MRI based medical image analysis: Survey on brain tumor grade classification. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.07.007] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Lahmiri S, Dawson DA, Shmuel A. Performance of machine learning methods in diagnosing Parkinson's disease based on dysphonia measures. Biomed Eng Lett 2017; 8:29-39. [PMID: 30603188 DOI: 10.1007/s13534-017-0051-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022] Open
Abstract
Parkinson's disease (PD) is a widespread degenerative syndrome that affects the nervous system. Its early appearing symptoms include tremor, rigidity, and vocal impairment (dysphonia). Consequently, speech indicators are important in the identification of PD based on dysphonic signs. In this regard, computer-aided-diagnosis systems based on machine learning can be useful in assisting clinicians in identifying PD patients. In this work, we evaluate the performance of machine learning based techniques for PD diagnosis based on dysphonia symptoms. Several machine learning techniques were considered and trained with a set of twenty-two voice disorder measurements to classify healthy and PD patients. These machine learning methods included linear discriminant analysis (LDA), k nearest-neighbors (k-NN), naïve Bayes (NB), regression trees (RT), radial basis function neural networks (RBFNN), support vector machine (SVM), and Mahalanobis distance classifier. We evaluated the performance of these methods by means of a tenfold cross validation protocol. Experimental results show that the SVM classifier achieved higher average performance than all other classifiers in terms of overall accuracy, G-mean, and area under the curve of the receiver operating characteristic plot. The SVM classifier achieved higher performance measures than the majority of the other classifiers also in terms of sensitivity, specificity, and F-measure statistics. The LDA, k-NN and RT achieved the highest average precision. The RBFNN method yielded the highest F-measure.; however, it performed poorly in terms of other performance metrics. Finally, t tests were performed to evaluate statistical significance of the results, confirming that the SVM outperformed most of the other classifiers on the majority of performance measures. SVM is a promising method for identifying PD patients based on classification of dysphonia measurements.
Collapse
Affiliation(s)
- Salim Lahmiri
- 1Montreal Neurological Institute, McGill University, Montreal, QC Canada.,2Departments of Neurology, McGill University, Montreal, QC Canada.,3Neurosurgery, McGill University, Montreal, QC Canada
| | - Debra Ann Dawson
- 1Montreal Neurological Institute, McGill University, Montreal, QC Canada.,2Departments of Neurology, McGill University, Montreal, QC Canada.,3Neurosurgery, McGill University, Montreal, QC Canada
| | - Amir Shmuel
- 1Montreal Neurological Institute, McGill University, Montreal, QC Canada.,2Departments of Neurology, McGill University, Montreal, QC Canada.,3Neurosurgery, McGill University, Montreal, QC Canada.,4Physiology, McGill University, Montreal, QC Canada.,5Biomedical Engineering, McGill University, Montreal, QC Canada
| |
Collapse
|