1
|
de Miguel-Fernández J, Lobo-Prat J, Prinsen E, Font-Llagunes JM, Marchal-Crespo L. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness. J Neuroeng Rehabil 2023; 20:23. [PMID: 36805777 PMCID: PMC9938998 DOI: 10.1186/s12984-023-01144-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. METHODS Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. RESULTS (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. CONCLUSIONS Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.
Collapse
Affiliation(s)
- Jesús de Miguel-Fernández
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | | | - Erik Prinsen
- Roessingh Research and Development, Roessinghsbleekweg 33b, 7522AH Enschede, Netherlands
| | - Josep M. Font-Llagunes
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Laura Marchal-Crespo
- Cognitive Robotics Department, Delft University of Technology, Mekelweg 2, 2628 Delft, Netherlands
- Motor Learning and Neurorehabilitation Lab, ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Chrif F, van Hedel HJA, Vivian M, Nef T, Hunt KJ. Usability evaluation of an interactive leg press training robot for children with neuromuscular impairments. Technol Health Care 2022; 30:1183-1197. [PMID: 35342069 PMCID: PMC9535578 DOI: 10.3233/thc-213629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND: The use of robotic technology for neurorehabilitative applications has become increasingly important for adults and children with different motor impairments. OBJECTIVE: The aim of this study was to evaluate the technical feasibility and usability of a new interactive leg-press training robot that was developed to train leg muscle strength and control, suitable for children with neuromuscular impairments. METHODS: An interactive robotic training system was designed and constructed with various control strategies, actuators and force/position sensors to enable the performance of different training modes (passive, active resistance, and exergames). Five paediatric patients, aged between 7 and 16 years (one girl, age 13.0 ± 3.7 years, [mean ± SD]), with different neuromuscular impairments were recruited to participate in this study. Patients evaluated the device based on a user satisfaction questionnaire and Visual Analog Scale (VAS) scores, and therapists evaluated the device with the modified System Usability Scale (SUS). RESULTS: One patient could not perform the training session because of his small knee range of motion. Visual Analog Scale scores were given by the 4 patients who performed the training sessions. All the patients adjudged the training with the interactive device as satisfactory. The average SUS score given by the therapists was 61.2 ± 18.4. CONCLUSION: This study proposed an interactive lower limb training device for children with different neuromuscular impairments. The device is deemed feasible for paediatric rehabilitation applications, both in terms of technical feasibility and usability acceptance. Both patients and therapists provided positive feedback regarding the training with the device.
Collapse
Affiliation(s)
- Farouk Chrif
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland.,Paediatric Rehab Research Group, University Children's Hospital Zurich, Affoltern am Albis, Switzerland
| | - Hubertus J A van Hedel
- Paediatric Rehab Research Group, University Children's Hospital Zurich, Affoltern am Albis, Switzerland
| | - Mauro Vivian
- Paediatric Rehab Research Group, University Children's Hospital Zurich, Affoltern am Albis, Switzerland
| | - Tobias Nef
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Kenneth J Hunt
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland
| |
Collapse
|
3
|
Gonzalez A, Garcia L, Kilby J, McNair P. Robotic devices for paediatric rehabilitation: a review of design features. Biomed Eng Online 2021; 20:89. [PMID: 34488777 PMCID: PMC8420060 DOI: 10.1186/s12938-021-00920-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/06/2021] [Indexed: 01/11/2023] Open
Abstract
Children with physical disabilities often have limited performance in daily activities, hindering their physical development, social development and mental health. Therefore, rehabilitation is essential to mitigate the adverse effects of the different causes of physical disabilities and improve independence and quality of life. In the last decade, robotic rehabilitation has shown the potential to augment traditional physical rehabilitation. However, to date, most robotic rehabilitation devices are designed for adult patients who differ in their needs compared to paediatric patients, limiting the devices' potential because the paediatric patients' needs are not adequately considered. With this in mind, the current work reviews the existing literature on robotic rehabilitation for children with physical disabilities, intending to summarise how the rehabilitation robots could fulfil children's needs and inspire researchers to develop new devices. A literature search was conducted utilising the Web of Science, PubMed and Scopus databases. Based on the inclusion-exclusion criteria, 206 publications were included, and 58 robotic devices used by children with a physical disability were identified. Different design factors and the treated conditions using robotic technology were compared. Through the analyses, it was identified that weight, safety, operability and motivation were crucial factors to the successful design of devices for children. The majority of the current devices were used for lower limb rehabilitation. Neurological disorders, in particular cerebral palsy, were the most common conditions for which devices were designed. By far, the most common actuator was the electric motor. Usually, the devices present more than one training strategy being the assistive strategy the most used. The admittance/impedance method is the most popular to interface the robot with the children. Currently, there is a trend on developing exoskeletons, as they can assist children with daily life activities outside of the rehabilitation setting, propitiating a wider adoption of the technology. With this shift in focus, it appears likely that new technologies to actuate the system (e.g. serial elastic actuators) and to detect the intention (e.g. physiological signals) of children as they go about their daily activities will be required.
Collapse
Affiliation(s)
- Alberto Gonzalez
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Lorenzo Garcia
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
| | - Jeff Kilby
- BioDesign Lab, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Peter McNair
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
4
|
Fazeli HR, Peng Q. Estimation of spatial-temporal hand motion parameters in rehabilitation using a low-cost noncontact measurement system. Med Eng Phys 2021; 90:43-53. [PMID: 33781479 DOI: 10.1016/j.medengphy.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/15/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Data collection and analysis are commonly used in a rehabilitation process to measure performances of the treatment. There is a lack of studies on the rehabilitation process monitored by a user-friendly interface. A low-cost system is developed in this research to assist users and therapists to measure hand motions and analyse important data of hand joints. The system consists of modules of data capturing, data analysis, and user interface. A Leap Motion sensor is used to capture joint positions of hand motions. Signal processing and wavelet de-noising methods are developed to improve accuracy of the data analysis. The user interface is designed using the Unity software to show graphical information of joint positions and motion parameters. The system has features of noncontact measurements, interactive environment, analysing and recording temporal data of motion parameters of hands. The system is validated by a gold standard motion capturing system. Case studies show effectiveness of the proposed system.
Collapse
Affiliation(s)
- Hamid Reza Fazeli
- Department of Mechanical Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| | - Qingjin Peng
- Department of Mechanical Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada.
| |
Collapse
|
5
|
Chrif F, Nef T, Hunt KJ. Technical feasibility of constant-load and high-intensity interval training for cardiopulmonary conditioning using a re-engineered dynamic leg press. BMC Biomed Eng 2020; 1:26. [PMID: 32903344 PMCID: PMC7422513 DOI: 10.1186/s42490-019-0025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/30/2019] [Indexed: 11/19/2022] Open
Abstract
Background Leg-press devices are one of the most widely used training tools for musculoskeletal strengthening of the lower-limbs, and have demonstrated important cardiopulmonary benefits for healthy and patient populations. Further engineering development was done on a dynamic leg-press for work-rate estimation by integrating force and motion sensors, power calculation and a visual feedback system for volitional work-rate control. This study aimed to assess the feasibility of the enhanced dynamic leg press for cardiopulmonary exercise training in constant-load training and high-intensity interval training. Five healthy participants aged 31.0±3.9 years (mean ± standard deviation) performed two cardiopulmonary training sessions: constant-load training and high-intensity interval training. Participants carried out the training sessions at a work rate that corresponds to their first ventilatory threshold for constant-load training, and their second ventilatory threshold for high-intensity interval training. Results All participants tolerated both training protocols, and could complete the training sessions with no complications. Substantial cardiopulmonary responses were observed. The difference between mean oxygen uptake and target oxygen uptake was 0.07±0.34 L/min (103 ±17%) during constant-load training, and 0.35±0.66 L/min (113 ±27%) during high-intensity interval training. The difference between mean heart rate and target heart rate was −7±19 bpm (94 ±15%) during constant-load training, and 4.2±16 bpm (103 ±12%) during high-intensity interval training. Conclusions The enhanced dynamic leg press was found to be feasible for cardiopulmonary exercise training, and for exercise prescription for different training programmes based on the ventilatory thresholds.
Collapse
Affiliation(s)
- Farouk Chrif
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Burgdorf, CH-3400 Switzerland.,Gerontechnology and Rehabilitation Research Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, CH-3008 Switzerland
| | - Tobias Nef
- Gerontechnology and Rehabilitation Research Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, CH-3008 Switzerland
| | - Kenneth J Hunt
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Burgdorf, CH-3400 Switzerland
| |
Collapse
|
6
|
Mu Z, Fang J, Zhang Q. Admittance Control of the Ankle Mechanism in a Rotational Orthosis for Walking with Arm Swing. IEEE Int Conf Rehabil Robot 2019; 2019:709-714. [PMID: 31374714 DOI: 10.1109/icorr.2019.8779408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In order to provide an effective system for rehabilitation of walking, a new rotational orthosis for walking with arm swing, called ROWAS II, was developed. This study focused on development and implementation of admittance control of the ankle mechanism in the ROWAS II system for promoting active training. Firstly, the mechanical structure of the ankle mechanism is briefly introduced. Then the algorithms of the closed-loop position control and the admittance control for the ankle mechanism are described in detail. Four able-bodied participants were recruited to use the ankle mechanism running in passive and active modes. The experimental results showed that the ankle mechanism well tracked the target trajectory in passive mode. In active mode, the participants interacted with the ankle mechanism, and adjusted their ankle movement based on their active force. The ankle mechanism has the technical potential to meet the requirements of passive and active training in the ankle movement for patients in different post-stroke stages.
Collapse
|
7
|
Ben Hmed A, Bakir T, Garnier YM, Sakly A, Lepers R, Binczak S. An approach to a muscle force model with force-pulse amplitude relationship of human quadriceps muscles. Comput Biol Med 2018; 101:218-228. [PMID: 30199798 DOI: 10.1016/j.compbiomed.2018.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent advanced applications of the functional electrical stimulation (FES) mostly used closed-loop control strategies based on mathematical models to improve the performance of the FES systems. In most of them, the pulse amplitude was used as an input control. However, in controlling the muscle force, the most popular force model developed by Ding et al. does not take into account the pulse amplitude effect. The purpose of this study was to include the pulse amplitude in the existing Ding et al. model based on the recruitment curve function. METHODS Quadriceps femoris muscles of eight healthy subjects were tested. Forces responses to stimulation trains with different pulse amplitudes (30-100 mA) and frequencies (20-80 Hz) were recorded and analyzed. Then, specific model parameter values were identified by fitting the measured forces for one train (50 Hz, 100 mA). The obtained model parameters were then used to identify the recruitment curve parameter values by fitting the force responses for different pulse amplitudes at the same frequency train. Finally, the extended model was used to predict force responses for a range of stimulation pulse amplitudes and frequencies. RESULTS The experimental results indicated that our adapted model accurately predicts the force-pulse amplitude relationship with an excellent agreement between measured and predicted forces (R2=0.998, RMSE = 6.6 N). CONCLUSIONS This model could be used to predict the pulse amplitude effect and to design control strategies for controlling the muscle force in order to obtain precise movements during FES sessions using intensity modulation.
Collapse
Affiliation(s)
- Abdennacer Ben Hmed
- Laboratory Le2i, FRE CNRS 2005, Univ. de Bourgogne Franche-Comte, Dijon, France; Research Unit ESIER, National Engineering School of Monastir (ENIM), University of Monastir, Tunisia.
| | - Toufik Bakir
- Laboratory Le2i, FRE CNRS 2005, Univ. de Bourgogne Franche-Comte, Dijon, France
| | - Yoann M Garnier
- INSERM UMR1093-CAPS, Univ. Bourgogne Franche-Comte, UFR des Sciences du Sport, Dijon, France
| | - Anis Sakly
- Research Unit ESIER, National Engineering School of Monastir (ENIM), University of Monastir, Tunisia
| | - Romuald Lepers
- INSERM UMR1093-CAPS, Univ. Bourgogne Franche-Comte, UFR des Sciences du Sport, Dijon, France
| | - Stephane Binczak
- Laboratory Le2i, FRE CNRS 2005, Univ. de Bourgogne Franche-Comte, Dijon, France
| |
Collapse
|
8
|
A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:1927807. [PMID: 29808109 PMCID: PMC5901836 DOI: 10.1155/2018/1927807] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/03/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022]
Abstract
Robots for stroke rehabilitation at the lower limbs in sitting/lying position have been developed extensively. Some of them have been applied in clinics and shown the potential of the recovery of poststroke patients who suffer from hemiparesis. These robots were developed to provide training at different joints of lower limbs with various activities and modalities. This article reviews the training activities that were realized by rehabilitation robots in literature, in order to offer insights for developing a novel robot suitable for stroke rehabilitation. The control system of the lower limb rehabilitation robot in sitting position that was introduced in the previous work is discussed in detail to demonstrate the behavior of the robot while training a subject. The nonlinear impedance control law, based on active assistive control strategy, is able to define the response of the robot with more specifications while the passivity property and the robustness of the system is verified. A preliminary experiment is conducted on a healthy subject to show that the robot is able to perform active assistive exercises with various training activities and assist the subject to complete the training with desired level of assistance.
Collapse
|
9
|
Chrif F, Nef T, Hunt KJ. Investigation of cardiopulmonary exercise testing using a dynamic leg press and comparison with a cycle ergometer. BMC Sports Sci Med Rehabil 2018; 10:5. [PMID: 29468072 PMCID: PMC5815210 DOI: 10.1186/s13102-018-0095-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/07/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Leg-press machines are widely employed for musculoskeletal conditioning of the lower-limbs and they provide cardiovascular benefits for resistance training in cardiac patients. The aim of this study was to assess the feasibility of a dynamic leg press (DLP) for incremental cardiopulmonary exercise testing (CPET) and to compare the results with those obtained using a cycle ergometer (CE). METHODS Twelve healthy participants aged 27±4 years (mean ± standard deviation) performed incremental cardiopulmonary exercise tests on a DLP and on a CE. To facilitate CPET, the DLP was augmented with force and angle sensors, a work rate estimation algorithm, and a visual feedback system. Gas exchange variables and heart rate were recorded breath-by-breath using a cardiopulmonary monitoring system. RESULTS Peak oxygen uptake and peak heart rate were significantly lower for the DLP than for the CE: peak oxygen uptake was 3.2±0.5 vs. 4.1±0.5 L/min (DLP vs. CE, p=6.7×10-6); peak heart rate was 174±14 vs. 182±13 bpm (DLP vs. CE, p=0.0016). Likewise, the sub-maximal cardiopulmonary parameters, viz. the first and second ventilatory thresholds, and ramp duration were significantly lower for the DLP. CONCLUSIONS The dynamic leg press was found to be feasible for CPET: the approach was technically implementable and all peak and sub-maximal cardiopulmonary parameters were able to be identified. The lower outcome values observed with the DLP can be attributed to a peripheral factor, namely the earlier onset of muscular fatigue.
Collapse
Affiliation(s)
- Farouk Chrif
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Burgdorf, CH-3400 Switzerland
- Gerontechnology and Rehabilitation Research Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, CH-3008 Switzerland
| | - Tobias Nef
- Gerontechnology and Rehabilitation Research Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, CH-3008 Switzerland
| | - Kenneth J. Hunt
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Burgdorf, CH-3400 Switzerland
| |
Collapse
|