1
|
Saghir U, Singh SK, Hasan M. Skin Cancer Image Segmentation Based on Midpoint Analysis Approach. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2581-2596. [PMID: 38627267 PMCID: PMC11522265 DOI: 10.1007/s10278-024-01106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/16/2024] [Accepted: 03/27/2024] [Indexed: 10/30/2024]
Abstract
Skin cancer affects people of all ages and is a common disease. The death toll from skin cancer rises with a late diagnosis. An automated mechanism for early-stage skin cancer detection is required to diminish the mortality rate. Visual examination with scanning or imaging screening is a common mechanism for detecting this disease, but due to its similarity to other diseases, this mechanism shows the least accuracy. This article introduces an innovative segmentation mechanism that operates on the ISIC dataset to divide skin images into critical and non-critical sections. The main objective of the research is to segment lesions from dermoscopic skin images. The suggested framework is completed in two steps. The first step is to pre-process the image; for this, we have applied a bottom hat filter for hair removal and image enhancement by applying DCT and color coefficient. In the next phase, a background subtraction method with midpoint analysis is applied for segmentation to extract the region of interest and achieves an accuracy of 95.30%. The ground truth for the validation of segmentation is accomplished by comparing the segmented images with validation data provided with the ISIC dataset.
Collapse
Affiliation(s)
- Uzma Saghir
- Dept. of Computer Science & Engineering, Lovely Professional University, Punjab, 144001, India
| | - Shailendra Kumar Singh
- Dept. of Computer Science & Engineering, Lovely Professional University, Punjab, 144001, India.
| | - Moin Hasan
- Dept. of Computer Science & Engineering, Jain Deemed-to-be-University, Bengaluru, 562112, India
| |
Collapse
|
2
|
Lama N, Stanley RJ, Lama B, Maurya A, Nambisan A, Hagerty J, Phan T, Van Stoecker W. LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1812-1823. [PMID: 38409610 PMCID: PMC11300415 DOI: 10.1007/s10278-024-01000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
Deep learning can exceed dermatologists' diagnostic accuracy in experimental image environments. However, inaccurate segmentation of images with multiple skin lesions can be seen with current methods. Thus, information present in multiple-lesion images, available to specialists, is not retrievable by machine learning. While skin lesion images generally capture a single lesion, there may be cases in which a patient's skin variation may be identified as skin lesions, leading to multiple false positive segmentations in a single image. Conversely, image segmentation methods may find only one region and may not capture multiple lesions in an image. To remedy these problems, we propose a novel and effective data augmentation technique for skin lesion segmentation in dermoscopic images with multiple lesions. The lesion-aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by mixing two or more lesion images from the training set. We used the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset to train the deep neural network with the proposed LAMA method. As none of the previous skin lesion datasets (including ISIC 2017) has considered multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used as a test set to evaluate the effectiveness of the proposed method. Our test results show that the proposed method improved the Jaccard score 8.3% from 0.687 to 0.744 and the Dice score 5% from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion ISIC 2017 test images, LAMA improved the baseline model's segmentation performance by 0.08%, raising the Jaccard score from 0.7947 to 0.8013 and the Dice score 0.6% from 0.8714 to 0.8766. The experimental results showed that LAMA improved the segmentation accuracy on both single-lesion and multi-lesion dermoscopic images. The proposed LAMA technique warrants further study.
Collapse
Affiliation(s)
- Norsang Lama
- Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | | | | | - Akanksha Maurya
- Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | - Anand Nambisan
- Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | | | - Thanh Phan
- Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | | |
Collapse
|
3
|
Zhang J, Zhong F, He K, Ji M, Li S, Li C. Recent Advancements and Perspectives in the Diagnosis of Skin Diseases Using Machine Learning and Deep Learning: A Review. Diagnostics (Basel) 2023; 13:3506. [PMID: 38066747 PMCID: PMC10706240 DOI: 10.3390/diagnostics13233506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Skin diseases constitute a widespread health concern, and the application of machine learning and deep learning algorithms has been instrumental in improving diagnostic accuracy and treatment effectiveness. This paper aims to provide a comprehensive review of the existing research on the utilization of machine learning and deep learning in the field of skin disease diagnosis, with a particular focus on recent widely used methods of deep learning. The present challenges and constraints were also analyzed and possible solutions were proposed. METHODS We collected comprehensive works from the literature, sourced from distinguished databases including IEEE, Springer, Web of Science, and PubMed, with a particular emphasis on the most recent 5-year advancements. From the extensive corpus of available research, twenty-nine articles relevant to the segmentation of dermatological images and forty-five articles about the classification of dermatological images were incorporated into this review. These articles were systematically categorized into two classes based on the computational algorithms utilized: traditional machine learning algorithms and deep learning algorithms. An in-depth comparative analysis was carried out, based on the employed methodologies and their corresponding outcomes. CONCLUSIONS Present outcomes of research highlight the enhanced effectiveness of deep learning methods over traditional machine learning techniques in the field of dermatological diagnosis. Nevertheless, there remains significant scope for improvement, especially in improving the accuracy of algorithms. The challenges associated with the availability of diverse datasets, the generalizability of segmentation and classification models, and the interpretability of models also continue to be pressing issues. Moreover, the focus of future research should be appropriately shifted. A significant amount of existing research is primarily focused on melanoma, and consequently there is a need to broaden the field of pigmented dermatology research in the future. These insights not only emphasize the potential of deep learning in dermatological diagnosis but also highlight directions that should be focused on.
Collapse
Affiliation(s)
- Junpeng Zhang
- College of Electrical Engineering, Sichuan University, Chengdu 610017, China; (J.Z.); (F.Z.); (M.J.)
| | - Fan Zhong
- College of Electrical Engineering, Sichuan University, Chengdu 610017, China; (J.Z.); (F.Z.); (M.J.)
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Mengqi Ji
- College of Electrical Engineering, Sichuan University, Chengdu 610017, China; (J.Z.); (F.Z.); (M.J.)
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| |
Collapse
|
4
|
Alsahafi YS, Elshora DS, Mohamed ER, Hosny KM. Multilevel Threshold Segmentation of Skin Lesions in Color Images Using Coronavirus Optimization Algorithm. Diagnostics (Basel) 2023; 13:2958. [PMID: 37761325 PMCID: PMC10529071 DOI: 10.3390/diagnostics13182958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Skin Cancer (SC) is among the most hazardous due to its high mortality rate. Therefore, early detection of this disease would be very helpful in the treatment process. Multilevel Thresholding (MLT) is widely used for extracting regions of interest from medical images. Therefore, this paper utilizes the recent Coronavirus Disease Optimization Algorithm (COVIDOA) to address the MLT issue of SC images utilizing the hybridization of Otsu, Kapur, and Tsallis as fitness functions. Various SC images are utilized to validate the performance of the proposed algorithm. The proposed algorithm is compared to the following five meta-heuristic algorithms: Arithmetic Optimization Algorithm (AOA), Sine Cosine Algorithm (SCA), Reptile Search Algorithm (RSA), Flower Pollination Algorithm (FPA), Seagull Optimization Algorithm (SOA), and Artificial Gorilla Troops Optimizer (GTO) to prove its superiority. The performance of all algorithms is evaluated using a variety of measures, such as Mean Square Error (MSE), Peak Signal-To-Noise Ratio (PSNR), Feature Similarity Index Metric (FSIM), and Normalized Correlation Coefficient (NCC). The results of the experiments prove that the proposed algorithm surpasses several competing algorithms in terms of MSE, PSNR, FSIM, and NCC segmentation metrics and successfully solves the segmentation issue.
Collapse
Affiliation(s)
- Yousef S. Alsahafi
- Department of Information Technology, Khulis College, University of Jeddah, Jeddah 23890, Saudi Arabia;
| | - Doaa S. Elshora
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt; (D.S.E.); (E.R.M.)
| | - Ehab R. Mohamed
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt; (D.S.E.); (E.R.M.)
| | - Khalid M. Hosny
- Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt; (D.S.E.); (E.R.M.)
| |
Collapse
|
5
|
Lama N, Hagerty J, Nambisan A, Stanley RJ, Van Stoecker W. Skin Lesion Segmentation in Dermoscopic Images with Noisy Data. J Digit Imaging 2023; 36:1712-1722. [PMID: 37020149 PMCID: PMC10407008 DOI: 10.1007/s10278-023-00819-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
We propose a deep learning approach to segment the skin lesion in dermoscopic images. The proposed network architecture uses a pretrained EfficientNet model in the encoder and squeeze-and-excitation residual structures in the decoder. We applied this approach on the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset. This benchmark dataset has been widely used in previous studies. We observed many inaccurate or noisy ground truth labels. To reduce noisy data, we manually sorted all ground truth labels into three categories - good, mildly noisy, and noisy labels. Furthermore, we investigated the effect of such noisy labels in training and test sets. Our test results show that the proposed method achieved Jaccard scores of 0.807 on the official ISIC 2017 test set and 0.832 on the curated ISIC 2017 test set, exhibiting better performance than previously reported methods. Furthermore, the experimental results showed that the noisy labels in the training set did not lower the segmentation performance. However, the noisy labels in the test set adversely affected the evaluation scores. We recommend that the noisy labels should be avoided in the test set in future studies for accurate evaluation of the segmentation algorithms.
Collapse
Affiliation(s)
- Norsang Lama
- Missouri University of Science &Technology, Rolla, MO, 65409, USA
| | | | - Anand Nambisan
- Missouri University of Science &Technology, Rolla, MO, 65409, USA
| | | | | |
Collapse
|
6
|
Khan S, Ali H, Shah Z. Identifying the role of vision transformer for skin cancer-A scoping review. Front Artif Intell 2023; 6:1202990. [PMID: 37529760 PMCID: PMC10388102 DOI: 10.3389/frai.2023.1202990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Detecting and accurately diagnosing early melanocytic lesions is challenging due to extensive intra- and inter-observer variabilities. Dermoscopy images are widely used to identify and study skin cancer, but the blurred boundaries between lesions and besieging tissues can lead to incorrect identification. Artificial Intelligence (AI) models, including vision transformers, have been proposed as a solution, but variations in symptoms and underlying effects hinder their performance. Objective This scoping review synthesizes and analyzes the literature that uses vision transformers for skin lesion detection. Methods The review follows the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Revise) guidelines. The review searched online repositories such as IEEE Xplore, Scopus, Google Scholar, and PubMed to retrieve relevant articles. After screening and pre-processing, 28 studies that fulfilled the inclusion criteria were included. Results and discussions The review found that the use of vision transformers for skin cancer detection has rapidly increased from 2020 to 2022 and has shown outstanding performance for skin cancer detection using dermoscopy images. Along with highlighting intrinsic visual ambiguities, irregular skin lesion shapes, and many other unwanted challenges, the review also discusses the key problems that obfuscate the trustworthiness of vision transformers in skin cancer diagnosis. This review provides new insights for practitioners and researchers to understand the current state of knowledge in this specialized research domain and outlines the best segmentation techniques to identify accurate lesion boundaries and perform melanoma diagnosis. These findings will ultimately assist practitioners and researchers in making more authentic decisions promptly.
Collapse
|
7
|
Lama N, Kasmi R, Hagerty JR, Stanley RJ, Young R, Miinch J, Nepal J, Nambisan A, Stoecker WV. ChimeraNet: U-Net for Hair Detection in Dermoscopic Skin Lesion Images. J Digit Imaging 2023; 36:526-535. [PMID: 36385676 PMCID: PMC10039207 DOI: 10.1007/s10278-022-00740-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Hair and ruler mark structures in dermoscopic images are an obstacle preventing accurate image segmentation and detection of critical network features. Recognition and removal of hairs from images can be challenging, especially for hairs that are thin, overlapping, faded, or of similar color as skin or overlaid on a textured lesion. This paper proposes a novel deep learning (DL) technique to detect hair and ruler marks in skin lesion images. Our proposed ChimeraNet is an encoder-decoder architecture that employs pretrained EfficientNet in the encoder and squeeze-and-excitation residual (SERes) structures in the decoder. We applied this approach at multiple image sizes and evaluated it using the publicly available HAM10000 (ISIC2018 Task 3) skin lesion dataset. Our test results show that the largest image size (448 × 448) gave the highest accuracy of 98.23 and Jaccard index of 0.65 on the HAM10000 (ISIC 2018 Task 3) skin lesion dataset, exhibiting better performance than for two well-known deep learning approaches, U-Net and ResUNet-a. We found the Dice loss function to give the best results for all measures. Further evaluated on 25 additional test images, the technique yields state-of-the-art accuracy compared to 8 previously reported classical techniques. We conclude that the proposed ChimeraNet architecture may enable improved detection of fine image structures. Further application of DL techniques to detect dermoscopy structures is warranted.
Collapse
Affiliation(s)
- Norsang Lama
- Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | | | | | - R Joe Stanley
- Missouri University of Science & Technology, Rolla, MO, 65409, USA.
| | - Reagan Young
- Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | - Jessica Miinch
- Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | | | - Anand Nambisan
- Missouri University of Science & Technology, Rolla, MO, 65409, USA
| | | |
Collapse
|
8
|
Zegour R, Belaid A, Ognard J, Ben Salem D. Convolutional neural networks-based method for skin hydration measurements in high resolution MRI. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Maurya S, Tiwari S, Mothukuri MC, Tangeda CM, Nandigam RNS, Addagiri DC. A review on recent developments in cancer detection using Machine Learning and Deep Learning models. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Batista LG, Bugatti PH, Saito PTM. Classification of Skin Lesion through Active Learning Strategies. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107122. [PMID: 36116397 DOI: 10.1016/j.cmpb.2022.107122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE According to the National Cancer Institute, among all malignant tumors, non-melanoma skin cancer, and melanoma are the most frequent in Brazil. Despite having a lower incidence, the melanoma type has accelerated growth and greater lethality. Several studies have been performed in recent years in the computer vision area to assist in the early diagnosis of skin cancer. Despite being widely used and presenting good results, deep learning approaches require a large amount of annotated data and considerable computational cost for training the model. Therefore, the present work explores active learning approaches to select a small set of more informative data for training the classifier. For that, different selection criteria are considered to obtain more effective and efficient classifiers for skin lesions. METHODS We perform an extensive experimental evaluation considering three datasets and different learning strategies and scenarios for validation. In addition to data augmentation, we evaluated two segmentation strategies considering the U-net CNN model and the Fully Convolutional Networks (FCN) with a manual expert review. We also analyzed the best (handcrafted and deep) features that describe each skin lesion and the most suitable classifiers and combinations (extractor-classifier) for this context. The active learning approach evaluated different criteria based on uncertainty, diversity, and representativeness to select the most informative samples. The strategies used were Decreasing Boundary Edges, Entropy, Least Confidence, Margin Sampling, Minimum-Spanning Tree Boundary Edges, and Root-Distance based Sampling. RESULTS It can be observed that the segmentation with FCN and manual correction by the specialist, the Border-Interior Classification (BIC) extractor, and the Random Forest (RF) classifier showed a better performance. Regarding the active learning approach, the Margin Sampling strategy presented the best classification accuracies (about 93%) with only 35% of the training set compared to the traditional learning approach (which requires the entire set). CONCLUSIONS According to the results, it is possible to observe that the selection strategies allow for achieving high accuracies faster (fewer learning iterations) and with a smaller amount of labeled samples compared to the traditional learning approach. Hence, active learning can contribute significantly to the diagnosis of skin lesions, beneficially reducing specialists' annotation costs.
Collapse
Affiliation(s)
- Lucas G Batista
- Department of Computing, Federal University of Technology - Parana, 1640, Alberto Carazzai Av., Cornelio Procopio, PR 86300-000, Brazil.
| | - Pedro H Bugatti
- Department of Computing, Federal University of Technology - Parana, 1640, Alberto Carazzai Av., Cornelio Procopio, PR 86300-000, Brazil.
| | - Priscila T M Saito
- Department of Computing, Federal University of Technology - Parana, 1640, Alberto Carazzai Av., Cornelio Procopio, PR 86300-000, Brazil; Departament of Computing, Federal University of Sao Carlos, km 235, Rodovia Washington Luis, Sao Carlos, SP 13565-905, Brazil; Institute of Computing, State University of Campinas, 1251, Albert Einstein Ave, Cidade Universitária, Campinas, SP 13083-852, Brazil.
| |
Collapse
|
11
|
Wu Y, Chen B, Zeng A, Pan D, Wang R, Zhao S. Skin Cancer Classification With Deep Learning: A Systematic Review. Front Oncol 2022; 12:893972. [PMID: 35912265 PMCID: PMC9327733 DOI: 10.3389/fonc.2022.893972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Skin cancer is one of the most dangerous diseases in the world. Correctly classifying skin lesions at an early stage could aid clinical decision-making by providing an accurate disease diagnosis, potentially increasing the chances of cure before cancer spreads. However, achieving automatic skin cancer classification is difficult because the majority of skin disease images used for training are imbalanced and in short supply; meanwhile, the model's cross-domain adaptability and robustness are also critical challenges. Recently, many deep learning-based methods have been widely used in skin cancer classification to solve the above issues and achieve satisfactory results. Nonetheless, reviews that include the abovementioned frontier problems in skin cancer classification are still scarce. Therefore, in this article, we provide a comprehensive overview of the latest deep learning-based algorithms for skin cancer classification. We begin with an overview of three types of dermatological images, followed by a list of publicly available datasets relating to skin cancers. After that, we review the successful applications of typical convolutional neural networks for skin cancer classification. As a highlight of this paper, we next summarize several frontier problems, including data imbalance, data limitation, domain adaptation, model robustness, and model efficiency, followed by corresponding solutions in the skin cancer classification task. Finally, by summarizing different deep learning-based methods to solve the frontier challenges in skin cancer classification, we can conclude that the general development direction of these approaches is structured, lightweight, and multimodal. Besides, for readers' convenience, we have summarized our findings in figures and tables. Considering the growing popularity of deep learning, there are still many issues to overcome as well as chances to pursue in the future.
Collapse
Affiliation(s)
- Yinhao Wu
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Bin Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - An Zeng
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Dan Pan
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Ruixuan Wang
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Shen Zhao
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Elashiri MA, Rajesh A, Nath Pandey S, Kumar Shukla S, Urooj S, Lay-Ekuakille A. Ensemble of weighted deep concatenated features for the skin disease classification model using modified long short term memory. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Fraiwan M, Faouri E. On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning. SENSORS 2022; 22:s22134963. [PMID: 35808463 PMCID: PMC9269808 DOI: 10.3390/s22134963] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
Abstract
Skin cancer (melanoma and non-melanoma) is one of the most common cancer types and leads to hundreds of thousands of yearly deaths worldwide. It manifests itself through abnormal growth of skin cells. Early diagnosis drastically increases the chances of recovery. Moreover, it may render surgical, radiographic, or chemical therapies unnecessary or lessen their overall usage. Thus, healthcare costs can be reduced. The process of diagnosing skin cancer starts with dermoscopy, which inspects the general shape, size, and color characteristics of skin lesions, and suspected lesions undergo further sampling and lab tests for confirmation. Image-based diagnosis has undergone great advances recently due to the rise of deep learning artificial intelligence. The work in this paper examines the applicability of raw deep transfer learning in classifying images of skin lesions into seven possible categories. Using the HAM1000 dataset of dermoscopy images, a system that accepts these images as input without explicit feature extraction or preprocessing was developed using 13 deep transfer learning models. Extensive evaluation revealed the advantages and shortcomings of such a method. Although some cancer types were correctly classified with high accuracy, the imbalance of the dataset, the small number of images in some categories, and the large number of classes reduced the best overall accuracy to 82.9%.
Collapse
|
14
|
Liu Y, Zhou J, Liu L, Zhan Z, Hu Y, Fu Y, Duan H. FCP-Net: A Feature-Compression-Pyramid Network Guided by Game-Theoretic Interactions for Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1482-1496. [PMID: 34982679 DOI: 10.1109/tmi.2021.3140120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medical image segmentation is a crucial step in diagnosis and analysis of diseases for clinical applications. Deep convolutional neural network methods such as DeepLabv3+ have successfully been applied for medical image segmentation, but multi-level features are seldom integrated seamlessly into different attention mechanisms, and few studies have fully explored the interactions between medical image segmentation and classification tasks. Herein, we propose a feature-compression-pyramid network (FCP-Net) guided by game-theoretic interactions with a hybrid loss function (HLF) for the medical image segmentation. The proposed approach consists of segmentation branch, classification branch and interaction branch. In the encoding stage, a new strategy is developed for the segmentation branch by applying three modules, e.g., embedded feature ensemble, dilated spatial mapping and channel attention (DSMCA), and branch layer fusion. These modules allow effective extraction of spatial information, efficient identification of spatial correlation among various features, and fully integration of multi-receptive field features from different branches. In the decoding stage, a DSMCA module and a multi-scale feature fusion module are used to establish multiple skip connections for enhancing fusion features. Classification and interaction branches are introduced to explore the potential benefits of the classification information task to the segmentation task. We further explore the interactions of segmentation and classification branches from a game theoretic view, and design an HLF. Based on this HLF, the segmentation, classification and interaction branches can collaboratively learn and teach each other throughout the training process, thus applying the conjoint information between the segmentation and classification tasks and improving the generalization performance. The proposed model has been evaluated using several datasets, including ISIC2017, ISIC2018, REFUGE, Kvasir-SEG, BUSI, and PH2, and the results prove its competitiveness compared with other state-of-the-art techniques.
Collapse
|
15
|
A Dermoscopic Inspired System for Localization and Malignancy Classification of Melanocytic Lesions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aims at developing a clinically oriented automated diagnostic tool for distinguishing malignant melanocytic lesions from benign melanocytic nevi in diverse image databases. Due to the presence of artifacts, smooth lesion boundaries, and subtlety in diagnostic features, the accuracy of such systems gets hampered. Thus, the proposed framework improves the accuracy of melanoma detection by combining the clinical aspects of dermoscopy. Two methods have been adopted for achieving the aforementioned objective. Firstly, artifact removal and lesion localization are performed. In the second step, various clinically significant features such as shape, color, texture, and pigment network are detected. Features are further reduced by checking their individual significance (i.e., hypothesis testing). These reduced feature vectors are then classified using SVM classifier. Features specific to the domain have been used for this design as opposed to features of the abstract images. The domain knowledge of an expert gets enhanced by this methodology. The proposed approach is implemented on a multi-source dataset (PH2 + ISBI 2016 and 2017) of 515 annotated images, thereby resulting in sensitivity, specificity and accuracy of 83.8%, 88.3%, and 86%, respectively. The experimental results are promising, and can be applied to detect asymmetry, pigment network, colors, and texture of the lesions.
Collapse
|
16
|
Yu Z, Nguyen J, Nguyen TD, Kelly J, Mclean C, Bonnington P, Zhang L, Mar V, Ge Z. Early Melanoma Diagnosis With Sequential Dermoscopic Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:633-646. [PMID: 34648437 DOI: 10.1109/tmi.2021.3120091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dermatologists often diagnose or rule out early melanoma by evaluating the follow-up dermoscopic images of skin lesions. However, existing algorithms for early melanoma diagnosis are developed using single time-point images of lesions. Ignoring the temporal, morphological changes of lesions can lead to misdiagnosis in borderline cases. In this study, we propose a framework for automated early melanoma diagnosis using sequential dermoscopic images. To this end, we construct our method in three steps. First, we align sequential dermoscopic images of skin lesions using estimated Euclidean transformations, extract the lesion growth region by computing image differences among the consecutive images, and then propose a spatio-temporal network to capture the dermoscopic changes from aligned lesion images and the corresponding difference images. Finally, we develop an early diagnosis module to compute probability scores of malignancy for lesion images over time. We collected 179 serial dermoscopic imaging data from 122 patients to verify our method. Extensive experiments show that the proposed model outperforms other commonly used sequence models. We also compared the diagnostic results of our model with those of seven experienced dermatologists and five registrars. Our model achieved higher diagnostic accuracy than clinicians (63.69% vs. 54.33%, respectively) and provided an earlier diagnosis of melanoma (60.7% vs. 32.7% of melanoma correctly diagnosed on the first follow-up images). These results demonstrate that our model can be used to identify melanocytic lesions that are at high-risk of malignant transformation earlier in the disease process and thereby redefine what is possible in the early detection of melanoma.
Collapse
|
17
|
Khasawneh AM, Bukhari A, Al-Khasawneh MA. Early Detection of Medical Image Analysis by Using Machine Learning Method. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3041811. [PMID: 38170039 PMCID: PMC10761224 DOI: 10.1155/2022/3041811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 01/05/2024]
Abstract
We develop effective medical image classification techniques, with an emphasis on histopathology and magnetic resonance imaging (MRI). The trainer utilized the curriculum as a starting point for a set of data and a restricted number of samples, and we used it as a starting point for a set of data. As calibrating a machine learning model is difficult, we used alternative methods as unsupervised feature extracts or weight-conditioning factors for identifying pathological histology pictures. As a result, the pretrained models will be trained on 3-channel RGB pictures, while the MRI sample has more slices. To alter the working model using the MRI data, the convolutional neural network (CNN) must be fine-tuned. Pretrained models are placed and then used as feature snippets. However, there is a scarcity of well-done medical photos, making training machine learning models a difficult endeavor to begin with. In any case, data augmentation aids in the generation of sufficient training samples; however, it is unclear if data augmentation aids in the prediction of unknown data samples. As a result, we fine-tuned machine learning models without using any additional data. Furthermore, rather than utilizing a standard machine learning classifier for the MRI data, we created a unique CNN that uses both 3D shear descriptors and deep features as input. This custom network identifies the MRI sample after processing our representation of the characteristics from beginning to end. On the hidden MRI dataset, our bespoke CNN outperforms traditional machine learning. Our CNN model is less prone to overfitting as a result of this. Furthermore, we have given cutting-edge outcomes employing machine learning.
Collapse
Affiliation(s)
| | - Amal Bukhari
- College of Computer Science and Engineering, University of Jeddah, Saudi Arabia
| | - Mahmoud Ahmad Al-Khasawneh
- School of Information Technology, Skyline University College, University City Sharjah, 1797 Sharjah, UAE
| |
Collapse
|
18
|
Arif M, Philip FM, Ajesh F, Izdrui D, Craciun MD, Geman O. Automated Detection of Nonmelanoma Skin Cancer Based on Deep Convolutional Neural Network. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6952304. [PMID: 35186235 PMCID: PMC8853788 DOI: 10.1155/2022/6952304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022]
Abstract
One of the deadliest diseases is skin cancer, especially melanoma. The high resemblance between different skin lesions such as melanoma and nevus in the skin colour images increases the complexity of identification and diagnosis. An efficient automated early detection system for skin cancer detection is essential in order to save human lives, time, and effort. In this article, an automatic skin lesion classification system using a pretrained deep learning network and transfer learning was proposed. Here, diagnosing melanoma in premature stages, a detection system has been designed which contains the following digital image processing techniques. First, dermoscopy images of skin were taken and this is subjected to a preprocessing step for noise removal and postprocessing step for image enhancement. Then the processed image undergoes image segmentation using k-means and modified k-means clustering. Second, using feature extraction technology, Gray Level Co-occurrence Matrix, and first order statistics, characteristics are extracted. Features are selected on the basis of Harris Hawks optimization (HHO). Finally, various classifiers are used for predicting the stages and efficiency of the proposed work. Measures of well-known quantities, sensitivity, precision, accuracy, and specificity are used in assessing the efficiency of the suggested method, where higher values were obtained. Compared to the current methods, it is found that the classification rate exceeded the output of the current approaches in the performance of the proposed approach.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Computer Science and IT, University of Lahore, Lahore, Pakistan
| | - Felix M. Philip
- Department of Computer Science and Information Technology, JAIN (Deemed-to-be University), Kochi, Kerala, India
| | - F. Ajesh
- Department of Computer Science and Engineering, Sree Buddha College of Engineering, Alappuzha, Kerala, India
| | - Diana Izdrui
- Stefan cel Mare University of Suceava, Suceava, Romania
| | | | - Oana Geman
- Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|
19
|
Bhat Y, Shah F, Latif I, Saqib NU, Shah A, Bashir Y, Devi R, Dar U, Naushad M, Hassan I, Krishan K. Role of dermoscopy in the assessment of difficult to diagnose cases of pigmentary dermatoses: study from a tertiary care hospital. PIGMENT INTERNATIONAL 2022. [DOI: 10.4103/pigmentinternational.pigmentinternational_58_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Zhao M, Kawahara J, Abhishek K, Shamanian S, Hamarneh G. Skin3D: Detection and Longitudinal Tracking of Pigmented Skin Lesions in 3D Total-Body Textured Meshes. Med Image Anal 2021; 77:102329. [DOI: 10.1016/j.media.2021.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
|
21
|
|
22
|
Pereira PMM, Thomaz LA, Tavora LMN, Assuncao PAA, Fonseca-Pinto R, Paiva RP, Faria SMM. Skin lesion classification using features of 3D border lines. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:2726-2731. [PMID: 34891814 DOI: 10.1109/embc46164.2021.9629966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Machine learning algorithms are progressively assuming important roles as computational tools to support clinical diagnosis, namely in the classification of pigmented skin lesions using RGB images. Most current classification methods rely on common 2D image features derived from shape, colour or texture, which does not always guarantee the best results. This work presents a contribution to this field, by exploiting the lesions' border line characteristics using a new dimension - depth, which has not been thoroughly investigated so far. A selected group of features is extracted from the depth information of 3D images, which are then used for classification using a quadratic Support Vector Machine. Despite class imbalance often present in medical image datasets, the proposed algorithm achieves a top geometric mean of 94.87%, comprising 100.00% sensitivity and 90.00% specificity, using only depth information for the detection of Melanomas. Such results show that potential gains can be achieved by extracting information from this often overlooked dimension, which provides more balanced results in terms of sensitivity and specificity than other settings.
Collapse
|
23
|
Pereira PMM, Thomaz LA, Tavora LMN, Assuncao PAA, Fonseca-Pinto RM, Paiva RP, Faria SMMD. Melanoma classification using light-Fields with morlet scattering transform and CNN: Surface depth as a valuable tool to increase detection rate. Med Image Anal 2021; 75:102254. [PMID: 34649195 DOI: 10.1016/j.media.2021.102254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022]
Abstract
Medical image classification through learning-based approaches has been increasingly used, namely in the discrimination of melanoma. However, for skin lesion classification in general, such methods commonly rely on dermoscopic or other 2D-macro RGB images. This work proposes to exploit beyond conventional 2D image characteristics, by considering a third dimension (depth) that characterises the skin surface rugosity, which can be obtained from light-field images, such as those available in the SKINL2 dataset. To achieve this goal, a processing pipeline was deployed using a morlet scattering transform and a CNN model, allowing to perform a comparison between using 2D information, only 3D information, or both. Results show that discrimination between Melanoma and Nevus reaches an accuracy of 84.00, 74.00 or 94.00% when using only 2D, only 3D, or both, respectively. An increase of 14.29pp in sensitivity and 8.33pp in specificity is achieved when expanding beyond conventional 2D information by also using depth. When discriminating between Melanoma and all other types of lesions (a further imbalanced setting), an increase of 28.57pp in sensitivity and decrease of 1.19pp in specificity is achieved for the same test conditions. Overall the results of this work demonstrate significant improvements over conventional approaches.
Collapse
Affiliation(s)
- Pedro M M Pereira
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Pinhal de Marrocos, Coimbra 3030-290, Portugal.
| | - Lucas A Thomaz
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| | - Luis M N Tavora
- ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| | - Pedro A A Assuncao
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| | - Rui M Fonseca-Pinto
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| | - Rui Pedro Paiva
- University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Pinhal de Marrocos, Coimbra 3030-290, Portugal
| | - Sergio M M de Faria
- Instituto de Telecomunicações, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal; ESTG, Polytechnic of Leiria, Morro do Lena - Alto do Vieiro, Leiria 2411-901, Portugal
| |
Collapse
|
24
|
Wang Y, Cai J, Louie DC, Wang ZJ, Lee TK. Incorporating clinical knowledge with constrained classifier chain into a multimodal deep network for melanoma detection. Comput Biol Med 2021; 137:104812. [PMID: 34507158 DOI: 10.1016/j.compbiomed.2021.104812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
In recent years, vast developments in Computer-Aided Diagnosis (CAD) for skin diseases have generated much interest from clinicians and other eventual end-users of this technology. Introducing clinical domain knowledge to these machine learning strategies can help dispel the black box nature of these tools, strengthening clinician trust. Clinical domain knowledge also provides new information channels which can improve CAD diagnostic performance. In this paper, we propose a novel framework for malignant melanoma (MM) detection by fusing clinical images and dermoscopic images. The proposed method combines a multi-labeled deep feature extractor and clinically constrained classifier chain (CC). This allows the 7-point checklist, a clinician diagnostic algorithm, to be included in the decision level while maintaining the clinical importance of the major and minor criteria in the checklist. Our proposed framework achieved an average accuracy of 81.3% for detecting all criteria and melanoma when testing on a publicly available 7-point checklist dataset. This is the highest reported results, outperforming state-of-the-art methods in the literature by 6.4% or more. Analyses also show that the proposed system surpasses the single modality system of using either clinical images or dermoscopic images alone and the systems without adopting the approach of multi-label and clinically constrained classifier chain. Our carefully designed system demonstrates a substantial improvement over melanoma detection. By keeping the familiar major and minor criteria of the 7-point checklist and their corresponding weights, the proposed system may be more accepted by physicians as a human-interpretable CAD tool for automated melanoma detection.
Collapse
Affiliation(s)
- Yuheng Wang
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada; Photomedicine Institute, Vancouver Coast Health Research Institute, Vancouver, BC, Canada; Departments of Cancer Control Research and Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Jiayue Cai
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Daniel C Louie
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada; Photomedicine Institute, Vancouver Coast Health Research Institute, Vancouver, BC, Canada; Departments of Cancer Control Research and Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Z Jane Wang
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Tim K Lee
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada; Photomedicine Institute, Vancouver Coast Health Research Institute, Vancouver, BC, Canada; Departments of Cancer Control Research and Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
25
|
Abstract
Recently, the incidence of skin cancer has increased considerably and is seriously threatening human health. Automatic detection of this disease, where early detection is critical to human life, is quite challenging. Factors such as undesirable residues (hair, ruler markers), indistinct boundaries, variable contrast, shape differences, and color differences in the skin lesion images make automatic analysis quite difficult. To overcome these challenges, a highly effective segmentation method based on a fully convolutional network (FCN) is presented in this paper. The proposed improved FCN (iFCN) architecture is used for the segmentation of full-resolution skin lesion images without any pre- or post-processing. It is to support the residual structure of the FCN architecture with spatial information. This situation, which creates a more advanced residual system, enables more precise detection of details on the edges of the lesion, and an analysis independent of skin color can be performed. It offers two contributions: determining the center of the lesion and clarifying the edge details despite the undesirable effects. Two publicly available datasets, the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 Challenge and PH2 datasets, are used to evaluate the performance of the iFCN method. The mean Jaccard index is 78.34%, the mean Dice score is 88.64%, and the mean accuracy value is 95.30% for the proposed method for the ISBI 2017 test dataset. Furthermore, the mean Jaccard index is 87.1%, the mean Dice score is 93.02%, and the mean accuracy value is 96.92% for the proposed method for the PH2 test dataset.
Collapse
Affiliation(s)
- Şaban Öztürk
- Technology Faculty, Electrical and Electronics Engineering, Amasya University, Amasya, Turkey.
| | - Umut Özkaya
- Engineering and Natural Science Faculty, Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey
| |
Collapse
|
26
|
Comparison of machine learning strategies for infrared thermography of skin cancer. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Dong Y, Wang L, Cheng S, Li Y. FAC-Net: Feedback Attention Network Based on Context Encoder Network for Skin Lesion Segmentation. SENSORS 2021; 21:s21155172. [PMID: 34372409 PMCID: PMC8347551 DOI: 10.3390/s21155172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022]
Abstract
Considerable research and surveys indicate that skin lesions are an early symptom of skin cancer. Segmentation of skin lesions is still a hot research topic. Dermatological datasets in skin lesion segmentation tasks generated a large number of parameters when data augmented, limiting the application of smart assisted medicine in real life. Hence, this paper proposes an effective feedback attention network (FAC-Net). The network is equipped with the feedback fusion block (FFB) and the attention mechanism block (AMB), through the combination of these two modules, we can obtain richer and more specific feature mapping without data enhancement. Numerous experimental tests were given by us on public datasets (ISIC2018, ISBI2017, ISBI2016), and a good deal of metrics like the Jaccard index (JA) and Dice coefficient (DC) were used to evaluate the results of segmentation. On the ISIC2018 dataset, we obtained results for DC equal to 91.19% and JA equal to 83.99%, compared with the based network. The results of these two main metrics were improved by more than 1%. In addition, the metrics were also improved in the other two datasets. It can be demonstrated through experiments that without any enhancements of the datasets, our lightweight model can achieve better segmentation performance than most deep learning architectures.
Collapse
|
28
|
|
29
|
Akkoca Gazioğlu BS, Kamaşak ME. Effects of objects and image quality on melanoma classification using deep neural networks. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Wang D, Pang N, Wang Y, Zhao H. Unlabeled skin lesion classification by self-supervised topology clustering network. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Afza F, Sharif M, Mittal M, Khan MA, Jude Hemanth D. A hierarchical three-step superpixels and deep learning framework for skin lesion classification. Methods 2021; 202:88-102. [PMID: 33610692 DOI: 10.1016/j.ymeth.2021.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skin cancer is one of the most common and dangerous cancer that exists worldwide. Malignant melanoma is one of the most dangerous skin cancer types has a high mortality rate. An estimated 196,060 melanoma cases will be diagnosed in 2020 in the USA. Many computerized techniques are presented in the past to diagnose skin lesions, but they are still failing to achieve significant accuracy. To improve the existing accuracy, we proposed a hierarchical framework based on two-dimensional superpixels and deep learning. First, we enhance the contrast of original dermoscopy images by fusing local and global enhanced images. The entire enhanced images are utilized in the next step to segmentation skin lesions using three-step superpixel lesion segmentation. The segmented lesions are mapped over the whole enhanced dermoscopy images and obtained only segmented color images. Then, a deep learning model (ResNet-50) is applied to these mapped images and learned features through transfer learning. The extracted features are further optimized using an improved grasshopper optimization algorithm, which is later classified through the Naïve Bayes classifier. The proposed hierarchical method has been evaluated on three datasets (Ph2, ISBI2016, and HAM1000), consisting of three, two, and seven skin cancer classes. On these datasets, our method achieved an accuracy of 95.40%, 91.1%, and 85.50%, respectively. The results show that this method can be helpful for the classification of skin cancer with improved accuracy.
Collapse
Affiliation(s)
- Farhat Afza
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan
| | - Mamta Mittal
- Department of Computer Science and Engineering, G. B. Pant Government Engineering College, Okhla, New Delhi, India
| | | | - D Jude Hemanth
- Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, India.
| |
Collapse
|
32
|
Winkler JK, Sies K, Fink C, Toberer F, Enk A, Abassi MS, Fuchs T, Haenssle HA. Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition. Eur J Cancer 2021; 145:146-154. [PMID: 33465706 DOI: 10.1016/j.ejca.2020.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Studies systematically unravelling possible causes for false diagnoses of deep learning convolutional neural networks (CNNs) are scarce, yet needed before broader application. OBJECTIVES The objective of the study was to investigate whether scale bars in dermoscopic images are associated with the diagnostic accuracy of a market-approved CNN. METHODS This cross-sectional analysis applied a CNN trained with more than 150,000 images (Moleanalyzer-pro®, FotoFinder Systems Inc., Bad Birnbach, Germany) to investigate seven dermoscopic image sets depicting the same 130 melanocytic lesions (107 nevi, 23 melanomas) without or with digitally superimposed scale bars of different manufacturers. Sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for the CNN's binary classification of images with or without superimposed scale bars were assessed. RESULTS Six dermoscopic image sets with different scale bars and one control set without scale bars (overall 910 images) were submitted to CNN analysis. In images without scale bars, the CNN attained a sensitivity [95% confidence interval] of 87.0% [67.9%-95.5%] and a specificity of 87.9% [80.3%-92.8%]. ROC AUC was 0.953 [0.914-0.992]. Scale bars were not associated with significant changes in sensitivity (range 87%-95.7%, all p ≥ 1.0). However, four scale bars induced a decrease of the CNN's specificity (range 0%-43.9%, all p < 0.001). Moreover, ROC AUC was significantly reduced by two scale bars (range 0.520-0.848, both p ≤ 0.042). CONCLUSIONS Superimposed scale bars in dermoscopic images may impair the CNN's diagnostic accuracy, mostly by increasing the rate of the false-positive diagnoses. We recommend avoiding scale bars in images intended for CNN analysis unless specific measures counteracting effects are implemented. CLINICAL TRIAL NUMBER This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; URL: https://www.drks.de/drks_web/).
Collapse
Affiliation(s)
- Julia K Winkler
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Katharina Sies
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Christine Fink
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Ferdinand Toberer
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Mohamed S Abassi
- Department of Research and Development, FotoFinder Systems GmbH, Bad Birnbach, Germany
| | - Tobias Fuchs
- Department of Research and Development, FotoFinder Systems GmbH, Bad Birnbach, Germany
| | - Holger A Haenssle
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
33
|
Jayalakshmi D., Dheeba J.. Border Detection in Skin Lesion Images Using an Improved Clustering Algorithm. INTERNATIONAL JOURNAL OF E-COLLABORATION 2020. [DOI: 10.4018/ijec.2020100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The incidence of skin cancer has been increasing in recent years and it can become dangerous if not detected early. Computer-aided diagnosis systems can help the dermatologists in assisting with skin cancer detection by examining the features more critically. In this article, a detailed review of pre-processing and segmentation methods is done on skin lesion images by investigating existing and prevalent segmentation methods for the diagnosis of skin cancer. The pre-processing stage is divided into two phases, in the first phase, a median filter is used to remove the artifact; and in the second phase, an improved K-means clustering with outlier removal (KMOR) algorithm is suggested. The proposed method was tested in a publicly available Danderm database. The improved cluster-based algorithm gives an accuracy of 92.8% with a sensitivity of 93% and specificity of 90% with an AUC value of 0.90435. From the experimental results, it is evident that the clustering algorithm has performed well in detecting the border of the lesion and is suitable for pre-processing dermoscopic images.
Collapse
Affiliation(s)
| | - Dheeba J.
- Vellore Institute of Technology, India
| |
Collapse
|
34
|
Birkenfeld JS, Tucker-Schwartz JM, Soenksen LR, Avilés-Izquierdo JA, Marti-Fuster B. Computer-aided classification of suspicious pigmented lesions using wide-field images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 195:105631. [PMID: 32652382 DOI: 10.1016/j.cmpb.2020.105631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Early identification of melanoma is conducted through whole-body visual examinations to detect suspicious pigmented lesions, a situation that fluctuates in accuracy depending on the experience and time of the examiner. Computer-aided diagnosis tools for skin lesions are typically trained using pre-selected single-lesion images, taken under controlled conditions, which limits their use in wide-field scenes. Here, we propose a computer-aided classifier system with such input conditions to aid in the rapid identification of suspicious pigmented lesions at the primary care level. METHODS 133 patients with a multitude of skin lesions were recruited for this study. All lesions were examined by a board-certified dermatologist and classified into "suspicious" and "non-suspicious". A new clinical database was acquired and created by taking Wide-Field images of all major body parts with a consumer-grade camera under natural illumination condition and with a consistent source of image variability. 3-8 images were acquired per patient on different sites of the body, and a total of 1759 pigmented lesions were extracted. A machine learning classifier was optimized and build into a computer aided classification system to binary classify each lesion using a suspiciousness score. RESULTS In a testing set, our computer-aided classification system achieved a sensitivity of 100% for suspicious pigmented lesions that were later confirmed by dermoscopy examination ("SPL_A") and 83.2% for suspicious pigmented lesions that were not confirmed after examination ("SPL_B"). Sensitivity for non-suspicious lesions was 72.1%, and accuracy was 75.9%. With these results we defined a suspiciousness score that is aligned with common macro-screening (naked eye) practices. CONCLUSIONS This work demonstrates that wide-field photography combined with computer-aided classification systems can distinguish suspicious from non-suspicious pigmented lesions, and might be effective to assess the severity of a suspicious pigmented lesions. We believe this approach could be useful to support skin screenings at a population-level.
Collapse
Affiliation(s)
- Judith S Birkenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; MIT linQ, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Brigham and Women's Hospital - Harvard Medical School, 75 Francis St, Boston, MA 02115, United States; Massachusetts General Hospital - Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States.
| | - Jason M Tucker-Schwartz
- MIT linQ, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Luis R Soenksen
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; MIT linQ, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA
| | - José A Avilés-Izquierdo
- Department of Dermatology, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Berta Marti-Fuster
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; MIT linQ, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Brigham and Women's Hospital - Harvard Medical School, 75 Francis St, Boston, MA 02115, United States
| |
Collapse
|
35
|
Attia M, Hossny M, Zhou H, Nahavandi S, Asadi H, Yazdabadi A. Realistic hair simulator for skin lesion images: A novel benchemarking tool. Artif Intell Med 2020; 108:101933. [PMID: 32972662 DOI: 10.1016/j.artmed.2020.101933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 11/15/2022]
Abstract
Automated skin lesion analysis is one of the trending fields that has gained attention among the dermatologists and health care practitioners. Skin lesion restoration is an essential pre-processing step for lesion enhancements for accurate automated analysis and diagnosis by both dermatologists and computer-aided diagnosis tools. Hair occlusion is one of the most popular artifacts in dermatoscopic images. It can negatively impact the skin lesions diagnosis by both dermatologists and automated computer diagnostic tools. Digital hair removal is a non-invasive method for image enhancement for decrease the hair-occlusion artifact in previously captured images. Several hair removal methods were proposed for skin delineation and removal without standardized benchmarking techniques. Manual annotation is one of the main challenges that hinder the validation of these proposed methods on a large number of images or against benchmarking datasets for comparison purposes. In the presented work, we propose a photo-realistic hair simulator based on context-aware image synthesis using image-to-image translation techniques via conditional adversarial generative networks for generation of different hair occlusions in skin images, along with ground-truth mask for hair location. Hair-occluded image is synthesized using the latent structure of any input hair-free image by deep encoding the input image into a latent vector of features. The locations of required hair are highlighted using white pixels on the input image. Then, these deep encoded features are used to reconstruct the synthetic highly realistic hair-occluded image. Besides, we explored using three loss functions including L1-norm, L2-norm and structural similarity index (SSIM) to maximize the image synthesis visual quality. For the evaluation of the generated samples, the t-SNE feature mapping and Bland-Altman test are used as visualization tools for the experimental results. The results show the superior performance of our proposed method compared to previous methods for hair synthesis with plausible colours and preserving the integrity of the lesion texture. The proposed method can be used to generate benchmarking datasets for comparing the performance of digital hair removal methods. The code is available online at: https://github.com/attiamohammed/realhair.
Collapse
Affiliation(s)
- Mohamed Attia
- Institute for Intelligent Systems Research and Innovation, Deakin University, Australia; Medical Research Institute, Alexandria University, Egypt.
| | - Mohammed Hossny
- Institute for Intelligent Systems Research and Innovation, Deakin University, Australia.
| | - Hailing Zhou
- Institute for Intelligent Systems Research and Innovation, Deakin University, Australia.
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation, Deakin University, Australia.
| | - Hamed Asadi
- School of Medicine, Melbourne University, Australia.
| | | |
Collapse
|
36
|
Banerjee S, Singh SK, Chakraborty A, Das A, Bag R. Melanoma Diagnosis Using Deep Learning and Fuzzy Logic. Diagnostics (Basel) 2020; 10:E577. [PMID: 32784837 PMCID: PMC7459879 DOI: 10.3390/diagnostics10080577] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 01/06/2023] Open
Abstract
Melanoma or malignant melanoma is a type of skin cancer that develops when melanocyte cells, damaged by excessive exposure to harmful UV radiations, start to grow out of control. Though less common than some other kinds of skin cancers, it is more dangerous because it rapidly metastasizes if not diagnosed and treated at an early stage. The distinction between benign and melanocytic lesions could at times be perplexing, but the manifestations of the disease could fairly be distinguished by a skilled study of its histopathological and clinical features. In recent years, deep convolutional neural networks (DCNNs) have succeeded in achieving more encouraging results yet faster and computationally effective systems for detection of the fatal disease are the need of the hour. This paper presents a deep learning-based 'You Only Look Once (YOLO)' algorithm, which is based on the application of DCNNs to detect melanoma from dermoscopic and digital images and offer faster and more precise output as compared to conventional CNNs. In terms with the location of the identified object in the cell, this network predicts the bounding box of the detected object and the class confidence score. The highlight of the paper, however, lies in its infusion of certain resourceful concepts like two phase segmentation done by a combination of the graph theory using minimal spanning tree concept and L-type fuzzy number based approximations and mathematical extraction of the actual affected area of the lesion region during feature extraction process. Experimented on a total of 20250 images from three publicly accessible datasets-PH2, International Symposium on Biomedical Imaging (ISBI) 2017 and The International Skin Imaging Collaboration (ISIC) 2019, encouraging results have been obtained. It achieved a Jac score of 79.84% on ISIC 2019 dataset and 86.99% and 88.64% on ISBI 2017 and PH2 datasets, respectively. Upon comparison of the pre-defined parameters with recent works in this area yielded comparatively superior output in most cases.
Collapse
Affiliation(s)
- Shubhendu Banerjee
- Department of CSE, Narula Institute of Technology, Kolkata 700109, India;
| | - Sumit Kumar Singh
- Department of CSE, Narula Institute of Technology, Kolkata 700109, India;
| | - Avishek Chakraborty
- Department of Basic Science and Humanities, Narula Institute of Technology, Kolkata 700109, India;
| | - Atanu Das
- Department of MCA, Netaji Subhash Engineering College, Kolkata 700152, India;
| | - Rajib Bag
- Department of CSE, Supreme Knowledge Foundation Group of Institutions, Mankundu 712139, India;
| |
Collapse
|
37
|
Rodrigues DDA, Ivo RF, Satapathy SC, Wang S, Hemanth J, Filho PPR. A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2020.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Classification Models for Skin Tumor Detection Using Texture Analysis in Medical Images. J Imaging 2020; 6:jimaging6060051. [PMID: 34460597 PMCID: PMC8321076 DOI: 10.3390/jimaging6060051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Medical images have made a great contribution to early diagnosis. In this study, a new strategy is presented for analyzing medical images of skin with melanoma and nevus to model, classify and identify lesions on the skin. Machine learning applied to the data generated by first and second order statistics features, Gray Level Co-occurrence Matrix (GLCM), keypoints and color channel information-Red, Green, Blue and grayscale images of the skin were used to characterize decisive information for the classification of the images. This work proposes a strategy for the analysis of skin images, aiming to choose the best mathematical classifier model, for the identification of melanoma, with the objective of assisting the dermatologist in the identification of melanomas, especially towards an early diagnosis.
Collapse
|
39
|
Skin Lesion Segmentation Using Image Bit-Plane Multilayer Approach. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The establishment of automatic diagnostic systems able to detect and classify skin lesions at the initial stage are getting really relevant and effective in providing support for medical personnel during clinical assessment. Image segmentation has a determinant part in computer-aided skin lesion diagnosis pipeline because it makes possible to extract and highlight information on lesion contour texture as, for example, skewness and area unevenness. However, artifacts, low contrast, indistinct boundaries, and different shapes and areas contribute to make skin lesion segmentation a challenging task. In this paper, a fully automatic computer-aided system for skin lesion segmentation in dermoscopic images is indicated. Adopting this method, noise and artifacts are initially reduced by the singular value decomposition; afterward lesion decomposition into a frame of bit-plane layers is performed. A specific procedure is implemented for redundant data reduction using simple Boolean operators. Since lesion and background are rarely homogeneous regions, the obtained segmentation region could contain some disjointed areas classified as lesion. To obtain a single zone classified as lesion avoiding spurious pixels or holes inside the image under test, mathematical morphological techniques are implemented. The performance obtained highlights the method validity.
Collapse
|
40
|
Classification of Lentigo Maligna at Patient-Level by Means of Reflectance Confocal Microscopy Data. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reflectance confocal microscopy is an appropriate tool for the diagnosis of lentigo maligna. Compared with dermoscopy, this device can provide abundant information as a mosaic and/or a stack of images. In this particular context, the number of images per patient varied between 2 and 833 images and the objective, ultimately, is to be able to discern between benign and malignant classes. First, this paper evaluated classification at the image level, with the help of handcrafted methods derived from the literature and transfer learning methods. The transfer learning feature extraction methods outperformed the handcrafted feature extraction methods from literature, with a F 1 score value of 0.82. Secondly, this work proposed patient-level supervised methods based on image decisions and a comparison of these with multi-instance learning methods. This study achieved comparable results to those of the dermatologists, with an auc score of 0.87 for supervised patient diagnosis and an auc score of 0.88 for multi-instance learning patient diagnosis. According to these results, computer-aided diagnosis methods presented in this paper could be easily used in a clinical context to save time or confirm a diagnosis and can be oriented to detect images of interest. Also, this methodology can be used to serve future works based on multimodality.
Collapse
|
41
|
Amin J, Sharif A, Gul N, Anjum MA, Nisar MW, Azam F, Bukhari SAC. Integrated design of deep features fusion for localization and classification of skin cancer. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2019.11.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Pereira PM, Fonseca-Pinto R, Paiva RP, Assuncao PA, Tavora LM, Thomaz LA, Faria SM. Skin lesion classification enhancement using border-line features – The melanoma vs nevus problem. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101765] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Yin B, Wang C, Abza F. New brain tumor classification method based on an improved version of whale optimization algorithm. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Cui H, Yang SS, Pang JW, Mi HR, Nuer CC, Ding J. An improved ASM-GDA approach to evaluate the production kinetics of loosely bound and tightly bound extracellular polymeric substances in biological phosphorus removal process. RSC Adv 2020; 10:2495-2506. [PMID: 35496100 PMCID: PMC9048850 DOI: 10.1039/c9ra06845g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2019] [Indexed: 11/21/2022] Open
Abstract
This study established an extended activated sludge model no. 2 (ASM2) for providing a new recognition of the contributions of both loosely-bound EPS (LB-EPS) and tightly-bound EPS (TB-EPS) into phosphorus (P) removal by incorporating their formation and degradation processes during the anaerobic-aerobic cycle. For determining the best-fit values for the new model parameters (k h,TB-EPS, k h,LB-EPS, f PP,TB-EPS, and f PP,LB-EPS) in this extended ASM2, a novel and convenient gradient descent algorithm (GDA) based ASM (ASM-GDA) method was developed. Sensitivity analysis of f PP,TB-EPS, f PP,LB-EPS, k h,TB-EPS, and k h,LB-EPS on the model target outputs of S PO4 , X TB-EPS, X LB-EPS, and X PP proved the accuracy of the chosen parameters. Eight batch experiments conducted under different influential chemical oxygen demand (COD) and P conditions were quantitatively and qualitatively analyzed. Respectively, 9.37-9.64% and 4.17-4.29% of P removal by TB-EPS and LB-EPS were achieved. Self-Organizing Map (SOM) has shown its high performance for visualization and abstraction for exhibiting the high correlations of the influential COD/P concentrations and the P% removal by TB-EPS (and LB-EPS). Comprehensive analyses of the influences of influential COD and P concentration on the biological phosphorus removal process help us in successfully establishing the mechanism kinetics of production and degradation of P in a dynamic P biological-treatment model.
Collapse
Affiliation(s)
- Hai Cui
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150000 PR China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150000 PR China
| | - Ji-Wei Pang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150000 PR China
| | - Hai-Rong Mi
- College of Aerospace and Civil Engineering, Harbin Engineering University Harbin 150001 PR China
| | - Chen-Chen Nuer
- College of Aerospace and Civil Engineering, Harbin Engineering University Harbin 150001 PR China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150000 PR China
| |
Collapse
|
45
|
A comparative study of features selection for skin lesion detection from dermoscopic images. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13721-019-0209-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Moradi N, Mahdavi-Amiri N. Kernel sparse representation based model for skin lesions segmentation and classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 182:105038. [PMID: 31437709 DOI: 10.1016/j.cmpb.2019.105038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Melanoma is a dangerous kind of skin disease with a high death rate, and its prevalence has increased rapidly in recent years. Diagnosis of melanoma in a primary phase can be helpful for its cure. Due to costs for dermatology, we need an automatic system to diagnose melanoma through lesion images. METHODS Here, we propose a sparse representation based method for segmentation and classification of lesion images. The main idea of our framework is based on a kernel sparse representation, which produces discriminative sparse codes to represent features in a high-dimensional feature space. Our novel formulation for discriminative kernel sparse coding jointly learns a kernel-based dictionary and a linear classifier. We also present an adaptive K-SVD algorithm for kernel dictionary and classifier learning. RESULTS We test our approach for both segmentation and classification tasks. The evaluation results on both dermoscopic and digital datasets demonstrate our approach to be competitive as compared to the available state-of-the-art methods, with the advantage of not needing any pre-processing. CONCLUSIONS Our method is insensitive to noise and image conditions and can be used effectively for challenging skin lesions. Our approach is so extensive to be adapted to various medical image segmentations.
Collapse
Affiliation(s)
- Nooshin Moradi
- Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.
| | - Nezam Mahdavi-Amiri
- Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
47
|
Talavera-Martínez L, Bibiloni P, González-Hidalgo M. Computational texture features of dermoscopic images and their link to the descriptive terminology: A survey. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 182:105049. [PMID: 31494412 DOI: 10.1016/j.cmpb.2019.105049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Computer-extracted texture features are relevant to diagnose cutaneous lesions such as melanomas. Our goal is to set a relationship between a well-established descriptive terminology, which describes the attributes of dermoscopic structures based on their aspect rather than their underlying causes, and the computational methods to extract texture-based features. By tackling this problem, we can ascertain what indicators used by dermatologists are reflected in the extracted texture features. We first review the state-of-the-art models for texture extraction in dermoscopic images. By comparing the methods' performance and goals, we conclude that (I) a single color space does not seem to give performances as good as using several ones, thus the latter is reasonable (II) the optimal number of extracted features seems to vary depending on the method's goal, and extracting a large number of features can lead to a loss of models robustness (III) methods such as GLCM, Sobel or Law energy filters are mainly used to capture local properties to detect specific dermoscopic structures (IV) methods that extract local and global features, like Gabor wavelets or SPT, tend to be used to analyze the presence of certain patterns of dermoscopic structures, e.g. globular, reticular, etc.
Collapse
Affiliation(s)
- Lidia Talavera-Martínez
- Universitat de les Illes Balears, SCOPIA Research Group, Palma 07122, Spain; Balearic Islands Health Research Institute (IdISBa), Palma 07010, Spain.
| | - Pedro Bibiloni
- Universitat de les Illes Balears, SCOPIA Research Group, Palma 07122, Spain; Balearic Islands Health Research Institute (IdISBa), Palma 07010, Spain.
| | - Manuel González-Hidalgo
- Universitat de les Illes Balears, SCOPIA Research Group, Palma 07122, Spain; Balearic Islands Health Research Institute (IdISBa), Palma 07010, Spain.
| |
Collapse
|
48
|
Gu Y, Ge Z, Bonnington CP, Zhou J. Progressive Transfer Learning and Adversarial Domain Adaptation for Cross-Domain Skin Disease Classification. IEEE J Biomed Health Inform 2019; 24:1379-1393. [PMID: 31545748 DOI: 10.1109/jbhi.2019.2942429] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deep learning has been used to analyze and diagnose various skin diseases through medical imaging. However, recent researches show that a well-trained deep learning model may not generalize well to data from different cohorts due to domain shift. Simple data fusion techniques such as combining disease samples from different data sources are not effective to solve this problem. In this paper, we present two methods for a novel task of cross-domain skin disease recognition. Starting from a fully supervised deep convolutional neural network classifier pre-trained on ImageNet, we explore a two-step progressive transfer learning technique by fine-tuning the network on two skin disease datasets. We then propose to adopt adversarial learning as a domain adaptation technique to perform invariant attribute translation from source to target domain in order to improve the recognition performance. In order to evaluate these two methods, we analyze generalization capability of the trained model on melanoma detection, cancer detection, and cross-modality learning tasks on two skin image datasets collected from different clinical settings and cohorts with different disease distributions. The experiments prove the effectiveness of our method in solving the domain shift problem.
Collapse
|
49
|
Attia M, Hossny M, Zhou H, Nahavandi S, Asadi H, Yazdabadi A. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 177:17-30. [PMID: 31319945 DOI: 10.1016/j.cmpb.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Skin melanoma is one of the major health problems in many countries. Dermatologists usually diagnose melanoma by visual inspection of moles. Digital hair removal can provide a non-invasive way to remove hair and hair-like regions as a pre-processing step for skin lesion images. Hair removal has two main steps: hair segmentation and hair gaps inpainting. However, hair segmentation is a challenging task which requires manual tuning of thresholding parameters. Hard-coded threshold leads to over-segmentation (false positives) which in return changes the textural integrity of lesions and or under-segmentation (false negatives) which leaves hair traces and artefacts which affect subsequent diagnosis. Additionally, dermal hair exhibits different characteristics: thin; overlapping; faded; occluded and overlaid on textured lesions. METHODS In this presented paper, we proposed a deep learning approach based on a hybrid network of convolutional and recurrent layers for hair segmentation using weakly labelled data. We utilised the deep encoded features for accurate detection and delineation of hair in skin images. The encoded features are then fed into recurrent neural network layers to encode the spatial dependencies between disjointed patches. Experiments are conducted on a publicly available dataset, called "Towards Melanoma Detection: Challenge". We chose two metrics to evaluate the produced segmentation masks. The first metric is the Jaccard Index which penalises false positives and false negatives. The second metric is the tumour disturb pattern which assesses the overall effect over the lesion texture due to unnecessary inpainting as a result of over segmentation. The qualitative and quantitative evaluations are employed to compare the proposed technique with state-of-the-art methods. RESULTS The proposed approach showed superior segmentation accuracy as demonstrated by a Jaccard Index of 77.8% in comparison to a 66.5% reported by the state-of-the-art method. We also achieved tumour disturb pattern as low as 14% compared to 23% for the state-of-the-art method. CONCLUSION The hybrid architecture for segmentation was able to accurately delineate and segment the hair from the background including lesions and the skin using weakly labelled ground truth for training.
Collapse
Affiliation(s)
- Mohamed Attia
- Institute for Intelligent Systems Research and Innovation, Deakin University, Australia.
| | - Mohammed Hossny
- Institute for Intelligent Systems Research and Innovation, Deakin University, Australia.
| | - Hailing Zhou
- Institute for Intelligent Systems Research and Innovation, Deakin University, Australia.
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation, Deakin University, Australia.
| | - Hamed Asadi
- School of Medicine, Melbourne University, Australia.
| | | |
Collapse
|
50
|
Chen B, Li J, Guo X, Lu G. DualCheXNet: dual asymmetric feature learning for thoracic disease classification in chest X-rays. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|