1
|
Dong X, Wen Y, Ji D, Yuan S, Liu Z, Shang W, Zhou W. Epileptic Seizure Detection with an End-to-End Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model. Int J Neural Syst 2024; 34:2450012. [PMID: 38230571 DOI: 10.1142/s0129065724500126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Automatic seizure detection plays a key role in assisting clinicians for rapid diagnosis and treatment of epilepsy. In view of the parallelism of temporal convolutional network (TCN) and the capability of bidirectional long short-term memory (BiLSTM) in mining the long-range dependency of multi-channel time-series, we propose an automatic seizure detection method with a novel end-to-end TCN-BiLSTM model in this work. First, raw EEG is filtered with a 0.5-45 Hz band-pass filter, and the filtered data are input into the proposed TCN-BiLSTM network for feature extraction and classification. Post-processing process including moving average filtering, thresholding and collar technique is then employed to further improve the detection performance. The method was evaluated on two EEG database. On the CHB-MIT scalp EEG database, our method achieved a segment-based sensitivity of 94.31%, specificity of 97.13%, and accuracy of 97.09%. Meanwhile, an event-based sensitivity of 96.48% and an average false detection rate (FDR) of 0.38/h were obtained. On the SH-SDU database we collected, the segment-based sensitivity of 94.99%, specificity of 93.25%, and accuracy of 93.27% were achieved. In addition, an event-based sensitivity of 99.35% and a false detection rate of 0.54/h were yielded. The total detection time consumed for 1[Formula: see text]h EEG data was 5.65[Formula: see text]s. These results demonstrate the superiority and promising potential of the proposed method in real-time monitoring of epileptic seizures.
Collapse
Affiliation(s)
- Xingchen Dong
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Yiming Wen
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Dezan Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Shasha Yuan
- School of Computer Science, Qufu Normal University, Rizhao 276826, P. R. China
| | - Zhen Liu
- Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Wei Shang
- Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
2
|
Kantipudi MVVP, Kumar NSP, Aluvalu R, Selvarajan S, Kotecha K. An improved GBSO-TAENN-based EEG signal classification model for epileptic seizure detection. Sci Rep 2024; 14:843. [PMID: 38191643 PMCID: PMC10774431 DOI: 10.1038/s41598-024-51337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Detection and classification of epileptic seizures from the EEG signals have gained significant attention in recent decades. Among other signals, EEG signals are extensively used by medical experts for diagnosing purposes. So, most of the existing research works developed automated mechanisms for designing an EEG-based epileptic seizure detection system. Machine learning techniques are highly used for reduced time consumption, high accuracy, and optimal performance. Still, it limits by the issues of high complexity in algorithm design, increased error value, and reduced detection efficacy. Thus, the proposed work intends to develop an automated epileptic seizure detection system with an improved performance rate. Here, the Finite Linear Haar wavelet-based Filtering (FLHF) technique is used to filter the input signals and the relevant set of features are extracted from the normalized output with the help of Fractal Dimension (FD) analysis. Then, the Grasshopper Bio-Inspired Swarm Optimization (GBSO) technique is employed to select the optimal features by computing the best fitness value and the Temporal Activation Expansive Neural Network (TAENN) mechanism is used for classifying the EEG signals to determine whether normal or seizure affected. Numerous intelligence algorithms, such as preprocessing, optimization, and classification, are used in the literature to identify epileptic seizures based on EEG signals. The primary issues facing the majority of optimization approaches are reduced convergence rates and higher computational complexity. Furthermore, the problems with machine learning approaches include a significant method complexity, intricate mathematical calculations, and a decreased training speed. Therefore, the goal of the proposed work is to put into practice efficient algorithms for the recognition and categorization of epileptic seizures based on EEG signals. The combined effect of the proposed FLHF, FD, GBSO, and TAENN models might dramatically improve disease detection accuracy while decreasing complexity of system along with time consumption as compared to the prior techniques. By using the proposed methodology, the overall average epileptic seizure detection performance is increased to 99.6% with f-measure of 99% and G-mean of 98.9% values.
Collapse
Affiliation(s)
- M V V Prasad Kantipudi
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, 412115, India
| | - N S Pradeep Kumar
- S.E.A College of Engineering and Technology, Bengaluru, 560049, India
| | - Rajanikanth Aluvalu
- Department of Information Technology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075, India
| | - Shitharth Selvarajan
- School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds, LS1 3HE, UK.
- Department of Computer Science, Kebri Dehar University, Somali, Ethiopia.
| | - K Kotecha
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, 412115, India
- Symbiosis Centre for Applied Artificial Intelligence (SCAAI), Symbiosis International (Deemed) University, Pune, 412115, India
| |
Collapse
|
3
|
Dou Y, Xia J, Fu M, Cai Y, Meng X, Zhan Y. Identification of epileptic networks with graph convolutional network incorporating oscillatory activities and evoked synaptic responses. Neuroimage 2023; 284:120439. [PMID: 37939889 DOI: 10.1016/j.neuroimage.2023.120439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/01/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Stereoelectroencephalography (SEEG) offers unique neural data from in-depth brain structures with fine temporal resolutions to better investigate the origin of epileptic brain activities. Although oscillatory patterns from different frequency bands and functional connectivity computed from the SEEG datasets are employed to study the epileptic zones, direct electrical stimulation-evoked electrophysiological recordings of synaptic responses, namely cortical-cortical evoked potentials (CCEPs), from the same SEEG electrodes are not explored for the localization of epileptic zones. Here we proposed a two-stream model with unsupervised learning and graph convolutional network tailored to the SEEG and CCEP datasets in individual patients to perform localization of epileptic zones. We compared our localization results with the clinically marked electrode sites determined for surgical resections. Our model had good classification capability when compared to other state-of-the-art methods. Furthermore, based on our prediction results we performed group-level brain-area mapping analysis for temporal, frontal and parietal epilepsy patients and found that epileptic and non-epileptic brain networks were distinct in patients with different types of focal epilepsy. Our unsupervised data-driven model provides personalized localization analysis for the epileptic zones. The epileptic and non-epileptic brain areas disclosed by the prediction model provide novel insights into the network-level pathological characteristics of epilepsy.
Collapse
Affiliation(s)
- Yonglin Dou
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Xia
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengmeng Fu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Yunpeng Cai
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xianghong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| | - Yang Zhan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
4
|
Tripathi PM, Kumar A, Kumar M, Komaragiri RS. Automatic seizure detection and classification using super-resolution superlet transform and deep neural network -A preprocessing-less method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107680. [PMID: 37459774 DOI: 10.1016/j.cmpb.2023.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 08/29/2023]
Abstract
CONTEXT Epilepsy, characterized by recurrent seizures, is a chronic brain disease that affects approximately 50 million. Recurrent seizures characterize it. A seizure, a burst of uncontrolled electrical activity between brain cells, results in temporary changes in behavior, level of consciousness, and involuntary movements. An accurate prediction of seizures can improve the standard of living in epileptic subjects. The increasing capabilities of machine learning and computer-assisted devices can detect seizures accurately with minimal human intervention. PROPOSED APPROACH This paper proposes a method to detect seizure and non-seizure events using superlet transform (SLT) and a deep convolution neural network: VGG-19. The electroencephalogram (EEG) dataset from the University of Bonn is used to validate the efficacy of the proposed method. METHODOLOGY SLT, a high-resolution time-frequency technique, converts EEG records into two-dimensional (2-D) images. SLT provides a high-resolution time-frequency representation reflecting the oscillation bursts in an EEG record. The time-frequency representations as 2-D images are fed to a pre-trained convolutional neural network: VGG-19. The last layers of VGG-19 are replaced with new layers to accommodate the different classification problems. RESULTS The proposed method achieved an accuracy of 100% for all seven seizure and non-seizure detection cases considered in this work. In the case of three and five-class classification problems, the proposed method has better accuracy than other existing methods. The CHB-MIT scalp EEG database is also used to assess the effectiveness of the proposed method, which achieved a classification accuracy of 94.3% in distinguishing between seizure and non-seizure events. CONCLUSION The results obtained using the proposed methodology show the efficacy of the proposed method in accurately detecting seizures and other brain activity with the least pre-processing and human involvement. The proposed method can assist medical practitioners by saving their effort and time.
Collapse
Affiliation(s)
- Prashant Mani Tripathi
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India
| | - Ashish Kumar
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - Manjeet Kumar
- Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India.
| | - Rama S Komaragiri
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India
| |
Collapse
|
5
|
Lu X, Wang T, Ye M, Huang S, Wang M, Zhang J. Study on characteristic of epileptic multi-electroencephalograph base on Hilbert-Huang transform and brain network dynamics. Front Neurosci 2023; 17:1117340. [PMID: 37214385 PMCID: PMC10192695 DOI: 10.3389/fnins.2023.1117340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Lots of studies have been carried out on characteristic of epileptic Electroencephalograph (EEG). However, traditional EEG characteristic research methods lack exploration of spatial information. To study the characteristics of epileptic EEG signals from the perspective of the whole brain,this paper proposed combination methods of multi-channel characteristics from time-frequency and spatial domains. This paper was from two aspects: Firstly, signals were converted into 2D Hilbert Spectrum (HS) images which reflected the time-frequency characteristics by Hilbert-Huang Transform (HHT). These images were identified by Convolutional Neural Network (CNN) model whose sensitivity was 99.8%, accuracy was 98.7%, specificity was 97.4%, F1-score was 98.7%, and AUC-ROC was 99.9%. Secondly, the multi-channel signals were converted into brain networks which reflected the spatial characteristics by Symbolic Transfer Entropy (STE) among different channels EEG. And the results show that there are different network properties between ictal and interictal phase and the signals during the ictal enter the synchronization state more quickly, which was verified by Kuramoto model. To summarize, our results show that there was different characteristics among channels for the ictal and interictal phase, which can provide effective physical non-invasive indicators for the identification and prediction of epileptic seizures.
Collapse
Affiliation(s)
- Xiaojie Lu
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
- Research Center of Health Big Data Mining and Applications, School of Medicine Information, Wan Nan Medical College, Wuhu, China
| | - Tingting Wang
- Research Center of Health Big Data Mining and Applications, School of Medicine Information, Wan Nan Medical College, Wuhu, China
| | - Mingquan Ye
- Research Center of Health Big Data Mining and Applications, School of Medicine Information, Wan Nan Medical College, Wuhu, China
| | - Shoufang Huang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Maosheng Wang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Jiqian Zhang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Dash DP, Kolekar MH, Chakraborty C, Khosravi MR. Review of Machine and Deep Learning Techniques in Epileptic Seizure Detection using Physiological Signals and Sentiment Analysis. ACM T ASIAN LOW-RESO 2022. [DOI: 10.1145/3552512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Epilepsy is one of the significant neurological disorders affecting nearly 65 million people worldwide. The repeated seizure is characterized as epilepsy. Different algorithms were proposed for efficient seizure detection using intracranial and surface EEG signals. In the last decade, various machine learning techniques based on seizure detection approaches were proposed. This paper discusses different machine learning and deep learning techniques for seizure detection using intracranial and surface EEG signals. A wide range of machine learning techniques such as support vector machine (SVM) classifiers, artificial neural network (ANN) classifier, and deep learning techniques such as a convolutional neural network (CNN) classifier, long-short term memory (LSTM) network for seizure detection are compared in this paper. The effectiveness of time-domain features, frequency domain features, and time-frequency domain features are discussed along with different machine learning techniques. Along with EEG, other physiological signals such as electrocardiogram are used to enhance seizure detection accuracy which are discussed in this paper. In recent years deep learning techniques based on seizure detection have found good classification accuracy. In this paper, an LSTM deep learning-network-based approach is implemented for seizure detection and compared with state-of-the-art methods. The LSTM based approach achieved 96.5% accuracy in seizure-nonseizure EEG signal classification. Apart from analyzing the physiological signals, sentiment analysis also has potential to detect seizure.
Impact Statement-
This review paper gives a summary of different research work related to epileptic seizure detection using machine learning and deep learning techniques. Manual seizure detetion is time consuming and requires expertise. So the artificial intelligence techniques such as machine learning and deep learning techniques are used for automatic seizure detection. Different physiological signals are used for seizure detection. Different researchers are working on developing automatic seizure detection using EEG, ECG, accelerometer, sentiment analysis. There is a need for a review paper that can discuss previous techniques and give further research direction. We have discussed different techniques for seizure detection with an accuracy comparison table. It can help the researcher to get an overview of both surface and intracranial EEG-based seizure detection approaches. The new researcher can easily compare different models and decide the model they want to start working on. A deep learning model is discussed to give a practical application of seizure detection. Sentiment analysis is another dimension of seizure detection and summerizing it will give a new prospective to the reader.
Collapse
|
7
|
Guo Y, Jiang X, Tao L, Meng L, Dai C, Long X, Wan F, Zhang Y, van Dijk J, Aarts RM, Chen W, Chen C. Epileptic Seizure Detection by Cascading Isolation Forest-based Anomaly Screening and EasyEnsemble. IEEE Trans Neural Syst Rehabil Eng 2022; 30:915-924. [PMID: 35353703 DOI: 10.1109/tnsre.2022.3163503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The electroencephalogram (EEG), for measuring the electrophysiological activity of the brain, has been widely applied in automatic detection of epilepsy seizures. Various EEG-based seizure detection algorithms have already yielded high sensitivity, but training those algorithms requires a large amount of labelled data. Data labelling is often done with a lot of human efforts, which is very time-consuming. In this study, we propose a hybrid system integrating an unsupervised learning (UL) module and a supervised learning (SL) module, where the UL module can significantly reduce the workload of data labelling. For preliminary seizure screening, UL synthesizes amplitude-integrated EEG (aEEG) extraction, isolation forest-based anomaly detection, adaptive segmentation, and silhouette coefficient-based anomaly detection evaluation. The UL module serves to quickly locate the determinate subjects (seizure segments and seizure-free segments) and the indeterminate subjects (potential seizure candidates). Afterwards, more robust seizure detection for the indeterminate subjects is performed by the SL using an EasyEnsemble algorithm. EasyEnsemble, as a class-imbalance learning method, can potentially decrease the generalization error of the seizure-free segments. The proposed method can significantly reduce the workload of data labelling while guaranteeing satisfactory performance. The proposed seizure detection system is evaluated using the Children's Hospital Boston - Massachusetts Institute of Technology (CHB-MIT) scalp EEG dataset, and it achieves a mean accuracy of 92.62%, a mean sensitivity of 95.55%, and a mean specificity of 92.57%. To the best of our knowledge, this is the first epilepsy seizure detection study employing the integration of both the UL and the SL modules, achieving a competitive performance superior or similar to that of the state-of-the-art methods.
Collapse
|
8
|
Liu H, Gao Y, Zhang J, Zhang J. Epilepsy EEG classification method based on supervised locality preserving canonical correlation analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:624-642. [PMID: 34903005 DOI: 10.3934/mbe.2022028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Existing epileptic seizure automatic detection systems are often troubled by high-dimensional electroencephalogram (EEG) features. High-dimensional features will not only bring redundant information and noise, but also reduce the response speed of the system. In order to solve this problem, supervised locality preserving canonical correlation analysis (SLPCCA), which can effectively use both sample category information and nonlinear relationships between features, is introduced. And an epileptic signal classification method based on SLPCCA is proposed. Firstly, the power spectral density and the fluctuation index of the frequency slice wavelet transform are extracted as features from the EEG fragments. Next, SLPCCA obtains the optimal projection direction by maximizing the weight correlation between the paired samples in the class and their neighbors. And the projection combination of original features in the optimal direction is the fusion feature. The fusion features are then input into LS-SVM for training and testing. This method is verified on the Bonn dataset and the CHB-MIT dataset and gets good results. On various classification tasks of Bonn data set, the proposed method achieves an average classification accuracy of 99.16%. On the binary classification task of the inter-seizure and seizure epileptic EEG of the CHB-MIT dataset, the proposed method achieves an average accuracy of 97.18%. The experimental results show that the algorithm achieves excellent results compared with several state-of-the-art methods. In addition, the parameter sensitivity of SLPCCA and the relationship between the dimension of the fusion features and the classification results are discussed. Therefore, the stability and effectiveness of the method are further verified.
Collapse
Affiliation(s)
- Hongming Liu
- Zhuoyue Honors College, Hangzhou Dianzi University, Hangzhou, China
- College of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Yunyuan Gao
- College of Automation, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, China
| | - Jianhai Zhang
- College of Computer & Software, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, China
| | | |
Collapse
|
9
|
Machine Learning-Based Epileptic Seizure Detection Methods Using Wavelet and EMD-Based Decomposition Techniques: A Review. SENSORS 2021; 21:s21248485. [PMID: 34960577 PMCID: PMC8703715 DOI: 10.3390/s21248485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
Epileptic seizures are temporary episodes of convulsions, where approximately 70 percent of the diagnosed population can successfully manage their condition with proper medication and lead a normal life. Over 50 million people worldwide are affected by some form of epileptic seizures, and their accurate detection can help millions in the proper management of this condition. Increasing research in machine learning has made a great impact on biomedical signal processing and especially in electroencephalogram (EEG) data analysis. The availability of various feature extraction techniques and classification methods makes it difficult to choose the most suitable combination for resource-efficient and correct detection. This paper intends to review the relevant studies of wavelet and empirical mode decomposition-based feature extraction techniques used for seizure detection in epileptic EEG data. The articles were chosen for review based on their Journal Citation Report, feature selection methods, and classifiers used. The high-dimensional EEG data falls under the category of ‘3N’ biosignals—nonstationary, nonlinear, and noisy; hence, two popular classifiers, namely random forest and support vector machine, were taken for review, as they are capable of handling high-dimensional data and have a low risk of over-fitting. The main metrics used are sensitivity, specificity, and accuracy; hence, some papers reviewed were excluded due to insufficient metrics. To evaluate the overall performances of the reviewed papers, a simple mean value of all metrics was used. This review indicates that the system that used a Stockwell transform wavelet variant as a feature extractor and SVM classifiers led to a potentially better result.
Collapse
|
10
|
Prasanna J, Subathra MSP, Mohammed MA, Damaševičius R, Sairamya NJ, George ST. Automated Epileptic Seizure Detection in Pediatric Subjects of CHB-MIT EEG Database-A Survey. J Pers Med 2021; 11:1028. [PMID: 34683169 PMCID: PMC8537151 DOI: 10.3390/jpm11101028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis. The dataset analyzed in this article, collected from Children's Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients. This review paper focuses on various patient-dependent and patient-independent personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up an enormous research area for biomedical engineers. This review paper focuses on the features of four domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG records, which were fed into several classifiers to classify between seizure and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined, and challenges in automatic seizure detection using the CHB-MIT database were addressed.
Collapse
Affiliation(s)
- J. Prasanna
- Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; (J.P.); (N.J.S.)
| | - M. S. P. Subathra
- Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India;
| | - Mazin Abed Mohammed
- Information Systems Department, College of Computer Science and Information Technology, University of Anbar, Ramadi 31000, Anbar, Iraq;
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Nanjappan Jothiraj Sairamya
- Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; (J.P.); (N.J.S.)
| | - S. Thomas George
- Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| |
Collapse
|
11
|
Li C, Zhou W, Liu G, Zhang Y, Geng M, Liu Z, Wang S, Shang W. Seizure Onset Detection Using Empirical Mode Decomposition and Common Spatial Pattern. IEEE Trans Neural Syst Rehabil Eng 2021; 29:458-467. [PMID: 33507872 DOI: 10.1109/tnsre.2021.3055276] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Automatic seizure onset detection plays an important role in epilepsy diagnosis. In this paper, a novel seizure onset detection method is proposed by combining empirical mode decomposition (EMD) of long-term scalp electroencephalogram (EEG) with common spatial pattern (CSP). First, wavelet transform (WT) and EMD are employed on EEG recordings respectively for filtering pre-processing and time-frequency decomposition. Then CSP is applied to reduce the dimension of multi-channel time-frequency representation, and the variance is extracted as the only feature. Afterwards, a support vector machine (SVM) group consisting of ten SVMs is served as a robust classifier. Finally, the post-processing is adopted to acquire a higher recognition rate and reduce the false detection rate. The results obtained from CHB-MIT database of 977 h scalp EEG recordings reveal that the proposed system can achieve a segment-based sensitivity of 97.34% with a specificity of 97.50% and an event-based sensitivity of 98.47% with a false detection rate of 0.63/h. This proposed detection system was also validated on a clinical scalp EEG database from the Second Hospital of Shandong University, and the system yielded a sensitivity of 93.67% and a specificity of 96.06%. At the event-based level, a sensitivity of 99.39% and a false detection rate of 0.64/h were obtained. Furthermore, this work showed that the CSP spatial filter was helpful to identify EEG channels involved in seizure onsets. These satisfactory results indicate that the proposed system may provide a reference for seizure onset detection in clinical applications.
Collapse
|
12
|
Sharp decrease in the Laplacian matrix rank of phase-space graphs: a potential biomarker in epilepsy. Cogn Neurodyn 2021; 15:649-659. [PMID: 34367366 DOI: 10.1007/s11571-020-09662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022] Open
Abstract
In this paper, phase space reconstruction from stereo-electroencephalography data of ten patients with focal epilepsy forms a series of graphs. Those obtained graphs reflect the transition characteristics of brain dynamical system from pre-seizure to seizure of epilepsy. Interestingly, it is found that the rank of Laplacian matrix of these graphs has a sharp decrease when a seizure is close to happen, which thus might be viewed as a new potential biomarker in epilepsy. In addition, the reliability of this method is numerically verified with a coupled mass neural model. In particular, our simulation suggests that this potential biomarker can play the roles of predictive effect or delayed awareness, depending on the bias current of the Gaussian noise. These results may give new insights into the seizure detection.
Collapse
|
13
|
Chakrabarti S, Swetapadma A, Ranjan A, Pattnaik PK. Time domain implementation of pediatric epileptic seizure detection system for enhancing the performance of detection and easy monitoring of pediatric patients. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
BALOGLU ULASBARAN, YILDIRIM ÖZAL. CONVOLUTIONAL LONG-SHORT TERM MEMORY NETWORKS MODEL FOR LONG DURATION EEG SIGNAL CLASSIFICATION. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419400050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background and objective: Deep learning structures have recently achieved remarkable success in the field of machine learning. Convolutional neural networks (CNN) in image processing and long-short term memory (LSTM) in the time-series analysis are commonly used deep learning algorithms. Healthcare applications of deep learning algorithms provide important contributions for computer-aided diagnosis research. In this study, convolutional long-short term memory (CLSTM) network was used for automatic classification of EEG signals and automatic seizure detection. Methods: A new nine-layer deep network model consisting of convolutional and LSTM layers was designed. The signals processed in the convolutional layers were given as an input to the LSTM network whose outputs were processed in densely connected neural network layers. The EEG data is appropriate for a model having 1-D convolution layers. A bidirectional model was employed in the LSTM layer. Results: Bonn University EEG database with five different datasets was used for experimental studies. In this database, each dataset contains 23.6[Formula: see text]s duration 100 single channel EEG segments which consist of 4097 dimensional samples (173.61[Formula: see text]Hz). Eight two-class and three three-class clinical scenarios were examined. When the experimental results were evaluated, it was seen that the proposed model had high accuracy on both binary and ternary classification tasks. Conclusions: The proposed end-to-end learning structure showed a good performance without using any hand-crafted feature extraction or shallow classifiers to detect the seizures. The model does not require filtering, and also automatically learns to filter the input as well. As a result, the proposed model can process long duration EEG signals without applying segmentation, and can detect epileptic seizures automatically by using the correlation of ictal and interictal signals of raw data.
Collapse
Affiliation(s)
- ULAS BARAN BALOGLU
- Computer Engineering Department, Engineering Faculty, Munzur University, Tunceli, Turkey
| | - ÖZAL YILDIRIM
- Computer Engineering Department, Engineering Faculty, Munzur University, Tunceli, Turkey
| |
Collapse
|
15
|
The earth mover's distance and Bayesian linear discriminant analysis for epileptic seizure detection in scalp EEG. Biomed Eng Lett 2018; 8:373-382. [PMID: 30603222 DOI: 10.1007/s13534-018-0082-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/21/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022] Open
Abstract
Since epileptic seizure is unpredictable and paroxysmal, an automatic system for seizure detecting could be of great significance and assistance to patients and medical staff. In this paper, a novel method is proposed for multichannel patient-specific seizure detection applying the earth mover's distance (EMD) in scalp EEG. Firstly, the wavelet decomposition is executed to the original EEGs with five scales, the scale 3, 4 and 5 are selected and transformed into histograms and afterwards the distances between histograms in pairs are computed applying the earth mover's distance as effective features. Then, the EMD features are sent to the classifier based on the Bayesian linear discriminant analysis (BLDA) for classification, and an efficient postprocessing procedure is applied to improve the detection system precision, finally. To evaluate the performance of the proposed method, the CHB-MIT scalp EEG database with 958 h EEG recordings from 23 epileptic patients is used and a relatively satisfactory detection rate is achieved with the average sensitivity of 95.65% and false detection rate of 0.68/h. The good performance of this algorithm indicates the potential application for seizure monitoring in clinical practice.
Collapse
|
16
|
Tsiouris KM, Konitsiotis S, Markoula S, Koutsouris DD, Fotiadis DI. An Unsupervised Methodology for the Detection of Epileptic Seizures Using EEG Signals: A Multi-Dataset Evaluation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:3390-3393. [PMID: 30441115 DOI: 10.1109/embc.2018.8513079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although the electroencephalogram (EEG) is the most commonly used means to monitor epileptic patients, public EEG datasets are very scarce making it difficult to develop and validate seizure detection algorithms. In this work an unsupervised seizure detection methodology is used to isolate ictal EEG segments without requiring any apriori information or human intervention. Seizures are detected using four simple seizure detection conditions that are activated when rhythmical activity from different brain areas is simultaneously concentrated in the alpha (8-13 Hz), theta (4-7 Hz) or delta (1-3 Hz) frequency range. Then, only a small proportion of the EEG segments that are most likely to contain ictal activity is selected and presented to the physician for the final evaluation. In this way, large volumes of EEG signals can be annotated in a fraction of the time and effort that would be otherwise required. Using EEG data from 33 sessions from the Temple University Hospital (TUH) EEG Corpus, our unsupervised methodology reached, on average, 84.92% seizure detection sensitivity with 3.46 false detections per hour of EEG signals.
Collapse
|