1
|
Mohammadi Far S, Beiramvand M, Shahbakhti M, Augustyniak P. Prediction of Preterm Labor from the Electrohysterogram Signals Based on Different Gestational Weeks. SENSORS (BASEL, SWITZERLAND) 2023; 23:5965. [PMID: 37447815 DOI: 10.3390/s23135965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Timely preterm labor prediction plays an important role for increasing the chance of neonate survival, the mother's mental health, and reducing financial burdens imposed on the family. The objective of this study is to propose a method for the reliable prediction of preterm labor from the electrohysterogram (EHG) signals based on different pregnancy weeks. In this paper, EHG signals recorded from 300 subjects were split into 2 groups: (I) those with preterm and term labor EHG data that were recorded prior to the 26th week of pregnancy (referred to as the PE-TE group), and (II) those with preterm and term labor EHG data that were recorded after the 26th week of pregnancy (referred to as the PL-TL group). After decomposing each EHG signal into four intrinsic mode functions (IMFs) by empirical mode decomposition (EMD), several linear and nonlinear features were extracted. Then, a self-adaptive synthetic over-sampling method was used to balance the feature vector for each group. Finally, a feature selection method was performed and the prominent ones were fed to different classifiers for discriminating between term and preterm labor. For both groups, the AdaBoost classifier achieved the best results with a mean accuracy, sensitivity, specificity, and area under the curve (AUC) of 95%, 92%, 97%, and 0.99 for the PE-TE group and a mean accuracy, sensitivity, specificity, and AUC of 93%, 90%, 94%, and 0.98 for the PL-TL group. The similarity between the obtained results indicates the feasibility of the proposed method for the prediction of preterm labor based on different pregnancy weeks.
Collapse
Affiliation(s)
| | - Matin Beiramvand
- Faculty of Information Technology and Communication, Tampere University, 33100 Tampere, Finland
| | - Mohammad Shahbakhti
- Biomedical Engineering Institute, Kaunas University of Technology, 51423 Kaunas, Lithuania
| | | |
Collapse
|
2
|
Fischer A, Rietveld A, Teunissen P, Bakker P, Hoogendoorn M. End-to-end learning with interpretation on electrohysterography data to predict preterm birth. Comput Biol Med 2023; 158:106846. [PMID: 37019011 DOI: 10.1016/j.compbiomed.2023.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Prediction of preterm birth is a difficult task for clinicians. By examining an electrohysterogram, electrical activity of the uterus that can lead to preterm birth can be detected. Since signals associated with uterine activity are difficult to interpret for clinicians without a background in signal processing, machine learning may be a viable solution. We are the first to employ Deep Learning models, a long-short term memory and temporal convolutional network model, on electrohysterography data using the Term-Preterm Electrohysterogram database. We show that end-to-end learning achieves an AUC score of 0.58, which is comparable to machine learning models that use handcrafted features. Moreover, we evaluate the effect of adding clinical data to the model and conclude that adding the available clinical data to electrohysterography data does not result in a gain in performance. Also, we propose an interpretability framework for time series classification that is well-suited to use in case of limited data, as opposed to existing methods that require large amounts of data. Clinicians with extensive work experience as gynaecologist used our framework to provide insights on how to link our results to clinical practice and stress that in order to decrease the number of false positives, a dataset with patients at high risk of preterm birth should be collected. All code is made publicly available.
Collapse
|
3
|
Prediction of Preterm Delivery from Unbalanced EHG Database. SENSORS 2022; 22:s22041507. [PMID: 35214412 PMCID: PMC8878555 DOI: 10.3390/s22041507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Objective: The early prediction of preterm labor can significantly minimize premature delivery complications for both the mother and infant. The aim of this research is to propose an automatic algorithm for the prediction of preterm labor using a single electrohysterogram (EHG) signal. Method: The proposed method firstly employs empirical mode decomposition (EMD) to split the EHG signal into two intrinsic mode functions (IMFs), then extracts sample entropy (SampEn), the root mean square (RMS), and the mean Teager–Kaiser energy (MTKE) from each IMF to form the feature vector. Finally, the extracted features are fed to a k-nearest neighbors (kNN), support vector machine (SVM), and decision tree (DT) classifiers to predict whether the recorded EHG signal refers to the preterm case. Main results: The studied database consists of 262 term and 38 preterm delivery pregnancies, each with three EHG channels, recorded for 30 min. The SVM with a polynomial kernel achieved the best result, with an average sensitivity of 99.5%, a specificity of 99.7%, and an accuracy of 99.7%. This was followed by DT, with a mean sensitivity of 100%, a specificity of 98.4%, and an accuracy of 98.7%. Significance: The main superiority of the proposed method over the state-of-the-art algorithms that studied the same database is the use of only a single EHG channel without using either synthetic data generation or feature ranking algorithms.
Collapse
|
4
|
Xu J, Wang M, Zhang J, Chen Z, Huang W, Shen G, Zhang M. Network theory based EHG signal analysis and its application in preterm prediction. IEEE J Biomed Health Inform 2022; 26:2876-2887. [PMID: 34986107 DOI: 10.1109/jbhi.2022.3140427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Preterm birth is the leading cause of neonatal morbidity and mortality. Early identification of high-risk patients followed by medical interventions is essential to the prevention of preterm birth. Based on the relationship between uterine contraction and the fundamental electrical activities of muscles, we extracted effective features from EHG signals recorded from pregnant women, and use them to train classifiers with the purpose of providing high precision in classifying term and preterm pregnancies. METHODS To characterize changes from irregularity to coherence of the uterine activity during the whole pregnancy, network representations of the original electrohysterogram (EHG) signals are established by applying the Horizontal Visibility Graph (HVG) algorithm, from which we extract network degree density and distribution, clustering coefficient and assortativity coefficient. Concerns on the interferences of different noise sources embedded in the EHG signal, we apply Short-Time Fourier Transform (STFT) to expand the original signal in the time-frequency domain. This allows a network representation and the extraction of related features on each frequency component. Feature selection algorithms are then used to filter out unrelated frequency components. We further apply the proposed feature extraction method to EHG signals available in the Term-Preterm EHG database (TPEHG), and use them to train classifiers. We adopt the Partition-Synthesis scheme which splits the original imbalanced dataset into two sets and synthesizes artificial samples separately within each subset to solve the problem of dataset imbalance. RESULTS The optimally selected network-based features, not only contribute to the identification of the essential frequency components of uterine activities related to preterm birth, but also to improved performance in classifying term/preterm pregnancies, i.e., the SVM (Support Vector Machine) classifier trained with the available samples in the TPEHG gives sensitivity, specificity, overall accuracy, and auc values as high as 0.89, 0.93, 0.91, and 0.97, respectively.
Collapse
|
5
|
|
6
|
Allahem H, Sampalli S. Automated labour detection framework to monitor pregnant women with a high risk of premature labour using machine learning and deep learning. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Xu J, Chen Z, Zhang J, Lu Y, Yang X, Pumir A. Realistic preterm prediction based on optimized synthetic sampling of EHG signal. Comput Biol Med 2021; 136:104644. [PMID: 34271407 DOI: 10.1016/j.compbiomed.2021.104644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 01/28/2023]
Abstract
Preterm labor is the leading cause of neonatal morbidity and mortality in newborns and has attracted significant research attention from many scientific areas. The relationship between uterine contraction and the underlying electrical activities makes uterine electrohysterogram (EHG) a promising direction for detecting and predicting preterm births. However, due to the scarcity of EHG signals, especially those leading to preterm births, synthetic algorithms have been used to generate artificial samples of preterm birth type in order to eliminate bias in the prediction towards normal delivery, at the expense of reducing the feature effectiveness in automatic preterm detection based on machine learning. To address this problem, we quantify the effect of synthetic samples (balance coefficient) on the effectiveness of features and form a general performance metric by using several feature scores with relevant weights that describe their contributions to class segregation. In combination with the activation/inactivation functions that characterize the effect of the abundance of training samples on the accuracy of the prediction of preterm and normal birth delivery, we obtained an optimal sample balance coefficient that compromises the effect of synthetic samples in removing bias toward the majority group (i.e., normal delivery and the side effect of reducing the importance of features). A more realistic predictive accuracy was achieved through a series of numerical tests on the publicly available TPEHG database, therefore demonstrating the effectiveness of the proposed method.
Collapse
Affiliation(s)
- Jinshan Xu
- College of Computer Science, Zhejiang University of Technology, Hangzhou, 310023, China; Research Center for AI Social Experiment, Zhejiang Lab, Hangzhou, 311321, China
| | - Zhenqin Chen
- College of Computer Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jinpeng Zhang
- College of Computer Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yanpei Lu
- College of Computer Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xi Yang
- College of Computer Science, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Alain Pumir
- Laboratoire de Physique, ENS-Lyon, Lyon, 69007, France
| |
Collapse
|
8
|
Vandewiele G, Dehaene I, Kovács G, Sterckx L, Janssens O, Ongenae F, De Backere F, De Turck F, Roelens K, Decruyenaere J, Van Hoecke S, Demeester T. Overly optimistic prediction results on imbalanced data: a case study of flaws and benefits when applying over-sampling. Artif Intell Med 2020; 111:101987. [PMID: 33461687 DOI: 10.1016/j.artmed.2020.101987] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 01/10/2023]
Abstract
Information extracted from electrohysterography recordings could potentially prove to be an interesting additional source of information to estimate the risk on preterm birth. Recently, a large number of studies have reported near-perfect results to distinguish between recordings of patients that will deliver term or preterm using a public resource, called the Term/Preterm Electrohysterogram database. However, we argue that these results are overly optimistic due to a methodological flaw being made. In this work, we focus on one specific type of methodological flaw: applying over-sampling before partitioning the data into mutually exclusive training and testing sets. We show how this causes the results to be biased using two artificial datasets and reproduce results of studies in which this flaw was identified. Moreover, we evaluate the actual impact of over-sampling on predictive performance, when applied prior to data partitioning, using the same methodologies of related studies, to provide a realistic view of these methodologies' generalization capabilities. We make our research reproducible by providing all the code under an open license.
Collapse
Affiliation(s)
- Gilles Vandewiele
- IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium.
| | - Isabelle Dehaene
- Department of Gynaecology and Obstetrics, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium
| | - György Kovács
- Analytical Minds Ltd Arpad street 5, Beregsurany, Hungary
| | - Lucas Sterckx
- IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium
| | - Olivier Janssens
- IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium
| | - Femke Ongenae
- IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium
| | - Femke De Backere
- IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium
| | - Filip De Turck
- IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium
| | - Kristien Roelens
- Department of Gynaecology and Obstetrics, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium
| | - Johan Decruyenaere
- Department of Intensive Care Medicine, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium
| | - Sofie Van Hoecke
- IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium
| | - Thomas Demeester
- IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium
| |
Collapse
|
9
|
Xu Y, Liu H, Hao D, Taggart M, Zheng D. Uterus Modeling from Cell to Organ Level: towards Better Understanding of Physiological Basis of Uterine Activity. IEEE Rev Biomed Eng 2020; 15:341-353. [PMID: 32915747 DOI: 10.1109/rbme.2020.3023535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The relatively limited understanding of the physiology of uterine activation prevents us from achieving optimal clinical outcomes for managing serious pregnancy disorders such as preterm birth or uterine dystocia. There is increasing awareness that multi-scale computational modeling of the uterus is a promising approach for providing a qualitative and quantitative description of uterine physiology. The overarching objective of such approach is to coalesce previously fragmentary information into a predictive and testable model of uterine activity that, in turn, informs the development of new diagnostic and therapeutic approaches to these pressing clinical problems. This article assesses current progress towards this goal. We summarize the electrophysiological basis of uterine activation as presently understood and review recent research approaches to uterine modeling at different scales from single cell to tissue, whole organ and organism with particular focus on transformative data in the last decade. We describe the positives and limitations of these approaches, thereby identifying key gaps in our knowledge on which to focus, in parallel, future computational and biological research efforts.
Collapse
|
10
|
Allahem H, Sampalli S. Automated uterine contractions pattern detection framework to monitor pregnant women with a high risk of premature labour. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Preliminary Study on the Efficient Electrohysterogram Segments for Recognizing Uterine Contractions with Convolutional Neural Networks. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3168541. [PMID: 31737659 PMCID: PMC6815646 DOI: 10.1155/2019/3168541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/28/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022]
Abstract
Background Uterine contraction (UC) is the tightening and shortening of the uterine muscles which can indicate the progress of pregnancy towards delivery. Electrohysterogram (EHG), which reflects uterine electrical activities, has recently been studied for UC monitoring. In this paper, we aimed to evaluate different EHG segments for recognizing UCs using the convolutional neural network (CNN). Materials and Methods In the open-access Icelandic 16-electrode EHG database (122 recordings from 45 pregnant women), 7136 UC and 7136 non-UC EHG segments with the duration of 60 s were manually extracted from 107 recordings of 40 pregnant women to develop a CNN model. A fivefold cross-validation was applied to evaluate the CNN based on sensitivity (SE), specificity (SP), and accuracy (ACC). Then, 1056 UC and 1056 non-UC EHG segments were extracted from the other 15 recordings of 5 pregnant women. Furthermore, the developed CNN model was applied to identify UCs using different EHG segments with the durations of 10 s, 20 s, and 30 s. Results The CNN achieved the average SE, SP, and ACC of 0.82, 0.93, and 0.88 for a 60 s EHG segment. The EHG segments of 10 s, 20 s, and 30 s around the TOCO peak achieved higher SE and ACC than the other segments with the same duration. The values of SE from 20 s EHG segments around the TOCO peak were higher than those from 10 s to 30 s EHG segments on the same side of the TOCO peak. Conclusion The proposed method could be used to determine the efficient EHG segments for recognizing UC with the CNN.
Collapse
|
12
|
Tylcz JB, Muszynski C, Dauchet J, Istrate D, Marque C. An Automatic Method for the Segmentation and Classification of Imminent Labor Contraction From Electrohysterograms. IEEE Trans Biomed Eng 2019; 67:1133-1141. [PMID: 31352329 DOI: 10.1109/tbme.2019.2930618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Preterm birth is the first cause of perinatal morbidity and mortality. Despite continuous clinical routine improvements, the preterm rate remains steady. Moreover, the specificity of the early diagnosis stays poor as many hospitalized women for preterm delivery threat finally deliver at term. In this context, the use of electrohysterograms may increase the sensitivity and the specificity of early diagnosis of preterm labor. METHODS This paper proposes a clinical application of electrohysterogram processing for the classification of patients as prone to deliver within a week or later. The approach relies on non-linear correlation analysis for the contraction bursts extraction and uses computation of various features combined with the use of Gaussian mixture models for their classification. The method is tested on a new dataset of 68 records collected on women hospitalized for preterm delivery threat. RESULTS This paper presents promising results for the automatic segmentation of the contraction and a classification sensitivity, specificity, and accuracy of, respectively, 80.7%, 76.3%, and 76.2%. CONCLUSION These results are in accordance with the gold standards but have the advantage to be non-invasive and could be performed at home. SIGNIFICANCE Diagnosis of imminent labor is possible by electrohysterography recording and may help in avoiding over-medication and in providing better cares to at-risk pregnant women.
Collapse
|
13
|
A Critical Look at Studies Applying Over-Sampling on the TPEHGDB Dataset. Artif Intell Med 2019. [DOI: 10.1007/978-3-030-21642-9_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Performance of source imaging techniques of spatially extended generators of uterine activity. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|