1
|
Kumar S, Kumar H, Kumar G, Singh SP, Bijalwan A, Diwakar M. A methodical exploration of imaging modalities from dataset to detection through machine learning paradigms in prominent lung disease diagnosis: a review. BMC Med Imaging 2024; 24:30. [PMID: 38302883 PMCID: PMC10832080 DOI: 10.1186/s12880-024-01192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Lung diseases, both infectious and non-infectious, are the most prevalent cause of mortality overall in the world. Medical research has identified pneumonia, lung cancer, and Corona Virus Disease 2019 (COVID-19) as prominent lung diseases prioritized over others. Imaging modalities, including X-rays, computer tomography (CT) scans, magnetic resonance imaging (MRIs), positron emission tomography (PET) scans, and others, are primarily employed in medical assessments because they provide computed data that can be utilized as input datasets for computer-assisted diagnostic systems. Imaging datasets are used to develop and evaluate machine learning (ML) methods to analyze and predict prominent lung diseases. OBJECTIVE This review analyzes ML paradigms, imaging modalities' utilization, and recent developments for prominent lung diseases. Furthermore, the research also explores various datasets available publically that are being used for prominent lung diseases. METHODS The well-known databases of academic studies that have been subjected to peer review, namely ScienceDirect, arXiv, IEEE Xplore, MDPI, and many more, were used for the search of relevant articles. Applied keywords and combinations used to search procedures with primary considerations for review, such as pneumonia, lung cancer, COVID-19, various imaging modalities, ML, convolutional neural networks (CNNs), transfer learning, and ensemble learning. RESULTS This research finding indicates that X-ray datasets are preferred for detecting pneumonia, while CT scan datasets are predominantly favored for detecting lung cancer. Furthermore, in COVID-19 detection, X-ray datasets are prioritized over CT scan datasets. The analysis reveals that X-rays and CT scans have surpassed all other imaging techniques. It has been observed that using CNNs yields a high degree of accuracy and practicability in identifying prominent lung diseases. Transfer learning and ensemble learning are complementary techniques to CNNs to facilitate analysis. Furthermore, accuracy is the most favored metric for assessment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Computer Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, India
- Department of Information Technology, School of Engineering and Technology (UIET), CSJM University, Kanpur, India
| | - Harish Kumar
- Department of Computer Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Gyanendra Kumar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | | | - Anchit Bijalwan
- Faculty of Electrical and Computer Engineering, Arba Minch University, Arba Minch, Ethiopia.
| | - Manoj Diwakar
- Department of Computer Science and Engineering, Graphic Era Deemed to Be University, Dehradun, India
| |
Collapse
|
2
|
Sebastian AE, Dua D. Lung Nodule Detection via Optimized Convolutional Neural Network: Impact of Improved Moth Flame Algorithm. SENSING AND IMAGING 2023; 24:11. [PMID: 36936054 PMCID: PMC10009866 DOI: 10.1007/s11220-022-00406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 06/18/2023]
Abstract
Lung cancer is a high-risk disease that affects people all over the world, and lung nodules are the most common sign of early lung cancer. Since early identification of lung cancer can considerably improve a lung scanner patient's chances of survival, an accurate and efficient nodule detection system can be essential. Automatic lung nodule recognition decreases radiologists' effort, as well as the risk of misdiagnosis and missed diagnoses. Hence, this article developed a new lung nodule detection model with four stages like "Image pre-processing, segmentation, feature extraction and classification". In this processes, pre-processing is the first step, in which the input image is subjected to a series of operations. Then, the "Otsu Thresholding model" is used to segment the pre-processed pictures. Then in the third stage, the LBP features are retrieved that is then classified via optimized Convolutional Neural Network (CNN). In this, the activation function and convolutional layer count of CNN is optimally tuned via a proposed algorithm known as Improved Moth Flame Optimization (IMFO). At the end, the betterment of the scheme is validated by carrying out analysis in terms of certain measures. Especially, the accuracy of the proposed work is 6.85%, 2.91%, 1.75%, 0.73%, 1.83%, as well as 4.05% superior to the extant SVM, KNN, CNN, MFO, WTEEB as well as GWO + FRVM methods respectively.
Collapse
Affiliation(s)
| | - Disha Dua
- Indira Gandhi Delhi Technical University for Women, Delhi, Delhi, India
| |
Collapse
|
3
|
Nirmalapriya G, Agalya V, Regunathan R, Belsam Jeba Ananth M. Fractional Aquila spider monkey optimization based deep learning network for classification of brain tumor. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Jin H, Yu C, Gong Z, Zheng R, Zhao Y, Fu Q. Machine learning techniques for pulmonary nodule computer-aided diagnosis using CT images: A systematic review. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Ensemble Learning Framework with GLCM Texture Extraction for Early Detection of Lung Cancer on CT Images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2733965. [PMID: 35693266 PMCID: PMC9184160 DOI: 10.1155/2022/2733965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022]
Abstract
Lung cancer has emerged as a major cause of death among all demographics worldwide, largely caused by a proliferation of smoking habits. However, early detection and diagnosis of lung cancer through technological improvements can save the lives of millions of individuals affected globally. Computerized tomography (CT) scan imaging is a proven and popular technique in the medical field, but diagnosing cancer with only CT scans is a difficult task even for doctors and experts. This is why computer-assisted diagnosis has revolutionized disease diagnosis, especially cancer detection. This study looks at 20 CT scan images of lungs. In a preprocessing step, we chose the best filter to be applied to medical CT images between median, Gaussian, 2D convolution, and mean. From there, it was established that the median filter is the most appropriate. Next, we improved image contrast by applying adaptive histogram equalization. Finally, the preprocessed image with better quality is subjected to two optimization algorithms, fuzzy c-means and k-means clustering. The performance of these algorithms was then compared. Fuzzy c-means showed the highest accuracy of 98%. The feature was extracted using Gray Level Cooccurrence Matrix (GLCM). In classification, a comparison between three algorithms—bagging, gradient boosting, and ensemble (SVM, MLPNN, DT, logistic regression, and KNN)—was performed. Gradient boosting performed the best among these three, having an accuracy of 90.9%.
Collapse
|
6
|
Silva F, Pereira T, Neves I, Morgado J, Freitas C, Malafaia M, Sousa J, Fonseca J, Negrão E, Flor de Lima B, Correia da Silva M, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J Pers Med 2022; 12:480. [PMID: 35330479 PMCID: PMC8950137 DOI: 10.3390/jpm12030480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.
Collapse
Affiliation(s)
- Francisco Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Inês Neves
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- ICBAS—Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Joana Morgado
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Cláudia Freitas
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mafalda Malafaia
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joana Sousa
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - João Fonseca
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Eduardo Negrão
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Beatriz Flor de Lima
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Miguel Correia da Silva
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - António J. Madureira
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel Ramos
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - José Luis Costa
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Venceslau Hespanhol
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - António Cunha
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- UTAD—University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Hélder P. Oliveira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Hsu HH, Ko KH, Chou YC, Wu YC, Chiu SH, Chang CK, Chang WC. Performance and reading time of lung nodule identification on multidetector CT with or without an artificial intelligence-powered computer-aided detection system. Clin Radiol 2021; 76:626.e23-626.e32. [PMID: 34023068 DOI: 10.1016/j.crad.2021.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
AIM To compare the performance and reading time of different readers using automatic artificial intelligence (AI)-powered computer-aided detection (CAD) to detect lung nodules in different reading modes. MATERIALS AND METHODS One hundred and fifty multidetector computed tomography (CT) datasets containing 340 nodules ≤10 mm in diameter were collected retrospectively. A CAD with vessel-suppressed function was used to interpret the images. Three junior and three senior readers were assigned to read (1) CT images without CAD, (2) second-read using CAD in which CAD was applied only after initial unassisted assessment, and (3) a concurrent read with CAD in which CAD was applied at the start of assessment. Diagnostic performances and reading times were compared using analysis of variance. RESULTS For all readers, the mean sensitivity improved from 64% (95% confidence interval [CI]: 62%, 66%) for the without-CAD mode to 82% (95% CI: 80%, 84%) for the second-reading mode and to 80% (95% CI: 79%, 82%) for the concurrent-reading mode (p<0.001). There was no significant difference between the two modes in terms of the mean sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) for both junior and senior readers and all readers (p>0.05). The reading time of all readers was significantly shorter for the concurrent-reading mode (124 ± 25 seconds) compared to without CAD (156 ± 34 seconds; p<0.001) and the second-reading mode (197 ± 46 seconds; p<0.001). CONCLUSION In CAD for lung nodules at CT, the second-reading mode and concurrent-reading mode may improve detection performance for all readers in both screening and clinical routine practice. Concurrent use of CAD is more efficient for both junior and senior readers.
Collapse
Affiliation(s)
- H-H Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - K-H Ko
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Y-C Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Y-C Wu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - S-H Chiu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - C-K Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - W-C Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Jeffrey Kuo CF, Hsun Lin K, Weng WH, Barman J, Huang CC, Chiu CW, Lee JL, Hsu HH. Complete fully automatic segmentation and 3-dimensional measurement of mediastinal lymph nodes for a new response evaluation criteria for solid tumors. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Wu Z, Ge R, Shi G, Zhang L, Chen Y, Luo L, Cao Y, Yu H. MD-NDNet: a multi-dimensional convolutional neural network for false-positive reduction in pulmonary nodule detection. Phys Med Biol 2020; 65:235053. [PMID: 32698172 DOI: 10.1088/1361-6560/aba87c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pulmonary nodule false-positive reduction is of great significance for automated nodule detection in clinical diagnosis of low-dose computed tomography (LDCT) lung cancer screening. Due to individual intra-nodule variations and visual similarities between true nodules and false positives as soft tissues in LDCT images, the current clinical practices remain subject to shortcomings of potential high-risk and time-consumption issues. In this paper, we propose a multi-dimensional nodule detection network (MD-NDNet) for automatic nodule false-positive reduction using deep convolutional neural network (DCNNs). The underlying method collaboratively integrates multi-dimensional nodule information to complementarily and comprehensively extract nodule inter-plane volumetric correlation features using three-dimensional CNNs (3D CNNs) and spatial nodule correlation features from sagittal, coronal, and axial planes using two-dimensional CNNs (2D CNNs) with attention module. To incorporate different sizes and shapes of nodule candidates, a multi-scale ensemble strategy is employed for probability aggregation with weights. The proposed method is evaluated on the LUNA16 challenge dataset in ISBI 2016 with ten-fold cross-validation. Experiment results show that the proposed framework achieves classification performance with a CPM score of 0.9008. All of these indicate that our method enables an efficient, accurate and reliable pulmonary nodule detection for clinical diagnosis.
Collapse
Affiliation(s)
- Zhan Wu
- School of Cyberspace Security, Southeast University, Nanjing, Jiangsu, China. Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|