1
|
Liu X, Hu B, Si Y, Wang Q. The role of eye movement signals in non-invasive brain-computer interface typing system. Med Biol Eng Comput 2024; 62:1981-1990. [PMID: 38509350 DOI: 10.1007/s11517-024-03070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Brain-Computer Interfaces (BCIs) have shown great potential in providing communication and control for individuals with severe motor disabilities. However, traditional BCIs that rely on electroencephalography (EEG) signals suffer from low information transfer rates and high variability across users. Recently, eye movement signals have emerged as a promising alternative due to their high accuracy and robustness. Eye movement signals are the electrical or mechanical signals generated by the movements and behaviors of the eyes, serving to denote the diverse forms of eye movements, such as fixations, smooth pursuit, and other oculomotor activities like blinking. This article presents a review of recent studies on the development of BCI typing systems that incorporate eye movement signals. We first discuss the basic principles of BCI and the recent advancements in text entry. Then, we provide a comprehensive summary of the latest advancements in BCI typing systems that leverage eye movement signals. This includes an in-depth analysis of hybrid BCIs that are built upon the integration of electrooculography (EOG) and eye tracking technology, aiming to enhance the performance and functionality of the system. Moreover, we highlight the advantages and limitations of different approaches, as well as potential future directions. Overall, eye movement signals hold great potential for enhancing the usability and accessibility of BCI typing systems, and further research in this area could lead to more effective communication and control for individuals with motor disabilities.
Collapse
Affiliation(s)
- Xi Liu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Bingliang Hu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Yang Si
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 611731, China
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
| |
Collapse
|
2
|
Szabo DA, Neagu N, Teodorescu S, Apostu M, Predescu C, Pârvu C, Veres C. The Role and Importance of Using Sensor-Based Devices in Medical Rehabilitation: A Literature Review on the New Therapeutic Approaches. SENSORS (BASEL, SWITZERLAND) 2023; 23:8950. [PMID: 37960649 PMCID: PMC10648494 DOI: 10.3390/s23218950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Due to the growth of sensor technology, more affordable integrated circuits, and connectivity technologies, the usage of wearable equipment and sensing devices for monitoring physical activities, whether for wellness, sports monitoring, or medical rehabilitation, has exploded. The current literature review was performed between October 2022 and February 2023 using PubMed, Web of Science, and Scopus in accordance with P.R.I.S.M.A. criteria. The screening phase resulted in the exclusion of 69 articles that did not fit the themes developed in all subchapters of the study, 41 articles that dealt exclusively with rehabilitation and orthopaedics, 28 articles whose abstracts were not visible, and 10 articles that dealt exclusively with other sensor-based devices and not medical ones; the inclusion phase resulted in the inclusion of 111 articles. Patients who utilise sensor-based devices have several advantages due to rehabilitating a missing component, which marks the accomplishment of a fundamental goal within the rehabilitation program. As technology moves faster and faster forward, the field of medical rehabilitation has to adapt to the time we live in by using technology and intelligent devices. This means changing every part of rehabilitation and finding the most valuable and helpful gadgets that can be used to regain lost functions, keep people healthy, or prevent diseases.
Collapse
Affiliation(s)
- Dan Alexandru Szabo
- Department of Human Movement Sciences, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department ME1, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Nicolae Neagu
- Department of Human Movement Sciences, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Silvia Teodorescu
- Department of Doctoral Studies, National University of Physical Education and Sports, 060057 Bucharest, Romania;
| | - Mihaela Apostu
- Department of Special Motor and Rehabilitation Medicine, National University of Physical Education and Sports, 060057 Bucharest, Romania; (M.A.); (C.P.)
| | - Corina Predescu
- Department of Special Motor and Rehabilitation Medicine, National University of Physical Education and Sports, 060057 Bucharest, Romania; (M.A.); (C.P.)
| | - Carmen Pârvu
- Faculty of Physical Education and Sports, “Dunărea de Jos” University, 63-65 Gării Street, 337347 Galati, Romania;
| | - Cristina Veres
- Department of Industrial Engineering and Management, University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
3
|
Kawala-Sterniuk A, Browarska N, Al-Bakri A, Pelc M, Zygarlicki J, Sidikova M, Martinek R, Gorzelanczyk EJ. Summary of over Fifty Years with Brain-Computer Interfaces-A Review. Brain Sci 2021; 11:43. [PMID: 33401571 PMCID: PMC7824107 DOI: 10.3390/brainsci11010043] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 11/16/2022] Open
Abstract
Over the last few decades, the Brain-Computer Interfaces have been gradually making their way to the epicenter of scientific interest. Many scientists from all around the world have contributed to the state of the art in this scientific domain by developing numerous tools and methods for brain signal acquisition and processing. Such a spectacular progress would not be achievable without accompanying technological development to equip the researchers with the proper devices providing what is absolutely necessary for any kind of discovery as the core of every analysis: the data reflecting the brain activity. The common effort has resulted in pushing the whole domain to the point where the communication between a human being and the external world through BCI interfaces is no longer science fiction but nowadays reality. In this work we present the most relevant aspects of the BCIs and all the milestones that have been made over nearly 50-year history of this research domain. We mention people who were pioneers in this area as well as we highlight all the technological and methodological advances that have transformed something available and understandable by a very few into something that has a potential to be a breathtaking change for so many. Aiming to fully understand how the human brain works is a very ambitious goal and it will surely take time to succeed. However, even that fraction of what has already been determined is sufficient e.g., to allow impaired people to regain control on their lives and significantly improve its quality. The more is discovered in this domain, the more benefit for all of us this can potentially bring.
Collapse
Affiliation(s)
- Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
| | - Natalia Browarska
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
| | - Amir Al-Bakri
- Department of Biomedical Engineering, College of Engineering, University of Babylon, 51001 Babylon, Iraq;
| | - Mariusz Pelc
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
- Department of Computing and Information Systems, University of Greenwich, London SE10 9LS, UK
| | - Jaroslaw Zygarlicki
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
| | - Michaela Sidikova
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.S.); (R.M.)
| | - Radek Martinek
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.S.); (R.M.)
| | - Edward Jacek Gorzelanczyk
- Department of Theoretical Basis of BioMedical Sciences and Medical Informatics, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland;
- Institute of Philosophy, Kazimierz Wielki University, 85-092 Bydgoszcz, Poland
- Babinski Specialist Psychiatric Healthcare Center, Outpatient Addiction Treatment, 91-229 Lodz, Poland
- The Society for the Substitution Treatment of Addiction “Medically Assisted Recovery”, 85-791 Bydgoszcz, Poland
| |
Collapse
|
4
|
do Nascimento LMS, Bonfati LV, Freitas MLB, Mendes Junior JJA, Siqueira HV, Stevan SL. Sensors and Systems for Physical Rehabilitation and Health Monitoring-A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4063. [PMID: 32707749 PMCID: PMC7436073 DOI: 10.3390/s20154063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 01/03/2023]
Abstract
The use of wearable equipment and sensing devices to monitor physical activities, whether for well-being, sports monitoring, or medical rehabilitation, has expanded rapidly due to the evolution of sensing techniques, cheaper integrated circuits, and the development of connectivity technologies. In this scenario, this paper presents a state-of-the-art review of sensors and systems for rehabilitation and health monitoring. Although we know the increasing importance of data processing techniques, our focus was on analyzing the implementation of sensors and biomedical applications. Although many themes overlap, we organized this review based on three groups: Sensors in Healthcare, Home Medical Assistance, and Continuous Health Monitoring; Systems and Sensors in Physical Rehabilitation; and Assistive Systems.
Collapse
Affiliation(s)
- Lucas Medeiros Souza do Nascimento
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| | - Lucas Vacilotto Bonfati
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| | - Melissa La Banca Freitas
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| | - José Jair Alves Mendes Junior
- Graduate Program in Electrical Engineering and Industrial Informatics (CPGEI), Federal University of Technology of Parana (UTFPR), Curitiba (PR) 80230-901, Brazil;
| | - Hugo Valadares Siqueira
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| | - Sergio Luiz Stevan
- Graduate Program in Electrical Engineering (PPGEE), Federal University of Technology of Parana (UTFPR), Ponta Grossa (PR) 84016-210, Brazil; (L.M.S.d.N.); (L.V.B.); (M.L.B.F.); (H.V.S.)
| |
Collapse
|