1
|
Wang H, Chen J, Zhang S, He Y, Xu J, Wu M, He J, Liao W, Luo X. Dual-Reference Source-Free Active Domain Adaptation for Nasopharyngeal Carcinoma Tumor Segmentation Across Multiple Hospitals. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4078-4090. [PMID: 38861437 DOI: 10.1109/tmi.2024.3412923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent and clinically significant malignancy that predominantly impacts the head and neck area. Precise delineation of the Gross Tumor Volume (GTV) plays a pivotal role in ensuring effective radiotherapy for NPC. Despite recent methods that have achieved promising results on GTV segmentation, they are still limited by lacking carefully-annotated data and hard-to-access data from multiple hospitals in clinical practice. Although some unsupervised domain adaptation (UDA) has been proposed to alleviate this problem, unconditionally mapping the distribution distorts the underlying structural information, leading to inferior performance. To address this challenge, we devise a novel Source-Free Active Domain Adaptation framework to facilitate domain adaptation for the GTV segmentation task. Specifically, we design a dual reference strategy to select domain-invariant and domain-specific representative samples from a specific target domain for annotation and model fine-tuning without relying on source-domain data. Our approach not only ensures data privacy but also reduces the workload for oncologists as it just requires annotating a few representative samples from the target domain and does not need to access the source data. We collect a large-scale clinical dataset comprising 1057 NPC patients from five hospitals to validate our approach. Experimental results show that our method outperforms the previous active learning (e.g., AADA and MHPL) and UDA (e.g., Tent and CPR) methods, and achieves comparable results to the fully supervised upper bound, even with few annotations, highlighting the significant medical utility of our approach. In addition, there is no public dataset about multi-center NPC segmentation, we will release code and dataset for future research (Git) https://github.com/whq-xxh/Active-GTV-Seg.
Collapse
|
2
|
Oliver J, Alapati R, Lee J, Bur A. Artificial Intelligence in Head and Neck Surgery. Otolaryngol Clin North Am 2024; 57:803-820. [PMID: 38910064 PMCID: PMC11374486 DOI: 10.1016/j.otc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
This article explores artificial intelligence's (AI's) role in otolaryngology for head and neck cancer diagnosis and management. It highlights AI's potential in pattern recognition for early cancer detection, prognostication, and treatment planning, primarily through image analysis using clinical, endoscopic, and histopathologic images. Radiomics is also discussed at length, as well as the many ways that radiologic image analysis can be utilized, including for diagnosis, lymph node metastasis prediction, and evaluation of treatment response. The study highlights AI's promise and limitations, underlining the need for clinician-data scientist collaboration to enhance head and neck cancer care.
Collapse
Affiliation(s)
- Jamie Oliver
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Boulevard M.S. 3010, Kansas City, KS, USA
| | - Rahul Alapati
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Boulevard M.S. 3010, Kansas City, KS, USA
| | - Jason Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Boulevard M.S. 3010, Kansas City, KS, USA
| | - Andrés Bur
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Boulevard M.S. 3010, Kansas City, KS, USA.
| |
Collapse
|
3
|
Zhao W, Huang Z, Tang S, Li W, Gao Y, Hu Y, Fan W, Cheng C, Yang Y, Zheng H, Liang D, Hu Z. MMCA-NET: A Multimodal Cross Attention Transformer Network for Nasopharyngeal Carcinoma Tumor Segmentation Based on a Total-Body PET/CT System. IEEE J Biomed Health Inform 2024; 28:5447-5458. [PMID: 38805334 DOI: 10.1109/jbhi.2024.3405993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor primarily treated by radiotherapy. Accurate delineation of the target tumor is essential for improving the effectiveness of radiotherapy. However, the segmentation performance of current models is unsatisfactory due to poor boundaries, large-scale tumor volume variation, and the labor-intensive nature of manual delineation for radiotherapy. In this paper, MMCA-Net, a novel segmentation network for NPC using PET/CT images that incorporates an innovative multimodal cross attention transformer (MCA-Transformer) and a modified U-Net architecture, is introduced to enhance modal fusion by leveraging cross-attention mechanisms between CT and PET data. Our method, tested against ten algorithms via fivefold cross-validation on samples from Sun Yat-sen University Cancer Center and the public HECKTOR dataset, consistently topped all four evaluation metrics with average Dice similarity coefficients of 0.815 and 0.7944, respectively. Furthermore, ablation experiments were conducted to demonstrate the superiority of our method over multiple baseline and variant techniques. The proposed method has promising potential for application in other tasks.
Collapse
|
4
|
Wang CK, Wang TW, Yang YX, Wu YT. Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2024; 11:504. [PMID: 38790370 PMCID: PMC11118180 DOI: 10.3390/bioengineering11050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Nasopharyngeal carcinoma is a significant health challenge that is particularly prevalent in Southeast Asia and North Africa. MRI is the preferred diagnostic tool for NPC due to its superior soft tissue contrast. The accurate segmentation of NPC in MRI is crucial for effective treatment planning and prognosis. We conducted a search across PubMed, Embase, and Web of Science from inception up to 20 March 2024, adhering to the PRISMA 2020 guidelines. Eligibility criteria focused on studies utilizing DL for NPC segmentation in adults via MRI. Data extraction and meta-analysis were conducted to evaluate the performance of DL models, primarily measured by Dice scores. We assessed methodological quality using the CLAIM and QUADAS-2 tools, and statistical analysis was performed using random effects models. The analysis incorporated 17 studies, demonstrating a pooled Dice score of 78% for DL models (95% confidence interval: 74% to 83%), indicating a moderate to high segmentation accuracy by DL models. Significant heterogeneity and publication bias were observed among the included studies. Our findings reveal that DL models, particularly convolutional neural networks, offer moderately accurate NPC segmentation in MRI. This advancement holds the potential for enhancing NPC management, necessitating further research toward integration into clinical practice.
Collapse
Affiliation(s)
- Chih-Keng Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-K.W.)
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ting-Wei Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-K.W.)
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Ya-Xuan Yang
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| |
Collapse
|
5
|
Ren CX, Xu GX, Dai DQ, Lin L, Sun Y, Liu QS. Cross-site prognosis prediction for nasopharyngeal carcinoma from incomplete multi-modal data. Med Image Anal 2024; 93:103103. [PMID: 38368752 DOI: 10.1016/j.media.2024.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate prognosis prediction for nasopharyngeal carcinoma based on magnetic resonance (MR) images assists in the guidance of treatment intensity, thus reducing the risk of recurrence and death. To reduce repeated labor and sufficiently explore domain knowledge, aggregating labeled/annotated data from external sites enables us to train an intelligent model for a clinical site with unlabeled data. However, this task suffers from the challenges of incomplete multi-modal examination data fusion and image data heterogeneity among sites. This paper proposes a cross-site survival analysis method for prognosis prediction of nasopharyngeal carcinoma from domain adaptation viewpoint. Utilizing a Cox model as the basic framework, our method equips it with a cross-attention based multi-modal fusion regularization. This regularization model effectively fuses the multi-modal information from multi-parametric MR images and clinical features onto a domain-adaptive space, despite the absence of some modalities. To enhance the feature discrimination, we also extend the contrastive learning technique to censored data cases. Compared with the conventional approaches which directly deploy a trained survival model in a new site, our method achieves superior prognosis prediction performance in cross-site validation experiments. These results highlight the key role of cross-site adaptability of our method and support its value in clinical practice.
Collapse
Affiliation(s)
- Chuan-Xian Ren
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Geng-Xin Xu
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Dao-Qing Dai
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Qing-Shan Liu
- School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
6
|
Zhang Q, Cheng J, Zhou C, Jiang X, Zhang Y, Zeng J, Liu L. PDC-Net: parallel dilated convolutional network with channel attention mechanism for pituitary adenoma segmentation. Front Physiol 2023; 14:1259877. [PMID: 37711463 PMCID: PMC10498772 DOI: 10.3389/fphys.2023.1259877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Accurate segmentation of the medical image is the basis and premise of intelligent diagnosis and treatment, which has a wide range of clinical application value. However, the robustness and effectiveness of medical image segmentation algorithms remains a challenging subject due to the unbalanced categories, blurred boundaries, highly variable anatomical structures and lack of training samples. For this reason, we present a parallel dilated convolutional network (PDC-Net) to address the pituitary adenoma segmentation in magnetic resonance imaging images. Firstly, the standard convolution block in U-Net is replaced by a basic convolution operation and a parallel dilated convolutional module (PDCM), to extract the multi-level feature information of different dilations. Furthermore, the channel attention mechanism (CAM) is integrated to enhance the ability of the network to distinguish between lesions and non-lesions in pituitary adenoma. Then, we introduce residual connections at each layer of the encoder-decoder, which can solve the problem of gradient disappearance and network performance degradation caused by network deepening. Finally, we employ the dice loss to deal with the class imbalance problem in samples. By testing on the self-established patient dataset from Quzhou People's Hospital, the experiment achieves 90.92% of Sensitivity, 99.68% of Specificity, 88.45% of Dice value and 79.43% of Intersection over Union (IoU).
Collapse
Affiliation(s)
- Qile Zhang
- Department of Rehabilitation, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Jianzhen Cheng
- Department of Rehabilitation, Quzhou Third Hospital, Quzhou, China
| | - Chun Zhou
- Department of Rehabilitation, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xiaoliang Jiang
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Yuanxiang Zhang
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Jiantao Zeng
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Li Liu
- Department of Thyroid and Breast Surgery, Kecheng District People’s Hospital, Quzhou, China
| |
Collapse
|
7
|
Yang X, Wu J, Chen X. Application of Artificial Intelligence to the Diagnosis and Therapy of Nasopharyngeal Carcinoma. J Clin Med 2023; 12:jcm12093077. [PMID: 37176518 PMCID: PMC10178972 DOI: 10.3390/jcm12093077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Artificial intelligence (AI) is an interdisciplinary field that encompasses a wide range of computer science disciplines, including image recognition, machine learning, human-computer interaction, robotics and so on. Recently, AI, especially deep learning algorithms, has shown excellent performance in the field of image recognition, being able to automatically perform quantitative evaluation of complex medical image features to improve diagnostic accuracy and efficiency. AI has a wider and deeper application in the medical field of diagnosis, treatment and prognosis. Nasopharyngeal carcinoma (NPC) occurs frequently in southern China and Southeast Asian countries and is the most common head and neck cancer in the region. Detecting and treating NPC early is crucial for a good prognosis. This paper describes the basic concepts of AI, including traditional machine learning and deep learning algorithms, and their clinical applications of detecting and assessing NPC lesions, facilitating treatment and predicting prognosis. The main limitations of current AI technologies are briefly described, including interpretability issues, privacy and security and the need for large amounts of annotated data. Finally, we discuss the remaining challenges and the promising future of using AI to diagnose and treat NPC.
Collapse
Affiliation(s)
- Xinggang Yang
- Division of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Guoxue Road 37, Chengdu 610041, China
| | - Juan Wu
- Out-Patient Department, West China Hospital, Sichuan University, Guoxue Road 37, Chengdu 610041, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Guoxue Road 37, Chengdu 610041, China
| |
Collapse
|
8
|
Zhou H, Li H, Chen S, Yang S, Ruan G, Liu L, Chen H. BSMM-Net: Multi-modal neural network based on bilateral symmetry for nasopharyngeal carcinoma segmentation. Front Hum Neurosci 2023; 16:1068713. [PMID: 36704094 PMCID: PMC9872196 DOI: 10.3389/fnhum.2022.1068713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Automatically and accurately delineating the primary nasopharyngeal carcinoma (NPC) tumors in head magnetic resonance imaging (MRI) images is crucial for patient staging and radiotherapy. Inspired by the bilateral symmetry of head and complementary information of different modalities, a multi-modal neural network named BSMM-Net is proposed for NPC segmentation. Methods First, a bilaterally symmetrical patch block (BSP) is used to crop the image and the bilaterally flipped image into patches. BSP can improve the precision of locating NPC lesions and is a simulation of radiologist locating the tumors with the bilateral difference of head in clinical practice. Second, modality-specific and multi-modal fusion features (MSMFFs) are extracted by the proposed MSMFF encoder to fully utilize the complementary information of T1- and T2-weighted MRI. The MSMFFs are then fed into the base decoder to aggregate representative features and precisely delineate the NPC. MSMFF is the output of MSMFF encoder blocks, which consist of six modality-specific networks and one multi-modal fusion network. Except T1 and T2, the other four modalities are generated from T1 and T2 by the BSP and DT modal generate block. Third, the MSMFF decoder with similar structure to the MSMFF encoder is deployed to supervise the encoder during training and assure the validity of the MSMFF from the encoder. Finally, experiments are conducted on the dataset of 7633 samples collected from 745 patients. Results and discussion The global DICE, precision, recall and IoU of the testing set are 0.82, 0.82, 0.86, and 0.72, respectively. The results show that the proposed model is better than the other state-of-the-art methods for NPC segmentation. In clinical diagnosis, the BSMM-Net can give precise delineation of NPC, which can be used to schedule the radiotherapy.
Collapse
Affiliation(s)
- Haoyang Zhou
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, China
- School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin, Guangxi, China
| | - Haojiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center (SYSUCC), Guanghzou, Guangdong, China
| | - Shuchao Chen
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, China
| | - Shixin Yang
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, China
| | - Guangying Ruan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center (SYSUCC), Guanghzou, Guangdong, China
| | - Lizhi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center (SYSUCC), Guanghzou, Guangdong, China
| | - Hongbo Chen
- School of Life & Environmental Science, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, Guangxi, China
| |
Collapse
|
9
|
Ji L, Mao R, Wu J, Ge C, Xiao F, Xu X, Xie L, Gu X. Deep Convolutional Neural Network for Nasopharyngeal Carcinoma Discrimination on MRI by Comparison of Hierarchical and Simple Layered Convolutional Neural Networks. Diagnostics (Basel) 2022; 12:2478. [PMID: 36292167 PMCID: PMC9601165 DOI: 10.3390/diagnostics12102478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck cancers. Early diagnosis plays a critical role in the treatment of NPC. To aid diagnosis, deep learning methods can provide interpretable clues for identifying NPC from magnetic resonance images (MRI). To identify the optimal models, we compared the discrimination performance of hierarchical and simple layered convolutional neural networks (CNN). Retrospectively, we collected the MRI images of patients and manually built the tailored NPC image dataset. We examined the performance of the representative CNN models including shallow CNN, ResNet50, ResNet101, and EfficientNet-B7. By fine-tuning, shallow CNN, ResNet50, ResNet101, and EfficientNet-B7 achieved the precision of 72.2%, 94.4%, 92.6%, and 88.4%, displaying the superiority of deep hierarchical neural networks. Among the examined models, ResNet50 with pre-trained weights demonstrated the best classification performance over other types of CNN with accuracy, precision, and an F1-score of 0.93, 0.94, and 0.93, respectively. The fine-tuned ResNet50 achieved the highest prediction performance and can be used as a potential tool for aiding the diagnosis of NPC tumors.
Collapse
Affiliation(s)
- Li Ji
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Rongzhi Mao
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jian Wu
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Cheng Ge
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Feng Xiao
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaofeng Gu
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
10
|
Huang Z, Tang S, Chen Z, Wang G, Shen H, Zhou Y, Wang H, Fan W, Liang D, Hu Y, Hu Z. TG-Net: Combining transformer and GAN for nasopharyngeal carcinoma tumor segmentation based on total-body uEXPLORER PET/CT scanner. Comput Biol Med 2022; 148:105869. [PMID: 35905660 DOI: 10.1016/j.compbiomed.2022.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor, and the main treatment is radiotherapy. Accurate delineation of the target tumor is essential for radiotherapy of NPC. NPC tumors are small in size and vary widely in shape and structure, making it a time-consuming and laborious task for even experienced radiologists to manually outline tumors. However, the segmentation performance of current deep learning models is not satisfactory, mainly manifested by poor segmentation boundaries. To solve this problem, this paper proposes a segmentation method for nasopharyngeal carcinoma based on dynamic PET-CT image data, whose input data include CT, PET, and parametric images (Ki images). This method uses a generative adversarial network with a modified UNet integrated with a Transformer as the generator (TG-Net) to achieve automatic segmentation of NPC on combined CT-PET-Ki images. In the coding stage, TG-Net uses moving windows to replace traditional pooling operations to obtain patches of different sizes, which can reduce information loss in the coding process. Moreover, the introduction of Transformer can make the network learn more representative features and improve the discriminant ability of the model, especially for tumor boundaries. Finally, the results of fivefold cross validation with an average Dice similarity coefficient score of 0.9135 show that our method has good segmentation performance. Comparative experiments also show that our network structure is superior to the most advanced methods in the segmentation of NPC. In addition, this work is the first to use Ki images to assist tumor segmentation. We also demonstrated the usefulness of adding Ki images to aid in tumor segmentation.
Collapse
Affiliation(s)
- Zhengyong Huang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Si Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zixiang Chen
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guoshuai Wang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hao Shen
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group, Shanghai, 201807, China
| | - Haining Wang
- Central Research Institute, United Imaging Healthcare Group, Shanghai, 201807, China
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Ng WT, But B, Choi HCW, de Bree R, Lee AWM, Lee VHF, López F, Mäkitie AA, Rodrigo JP, Saba NF, Tsang RKY, Ferlito A. Application of Artificial Intelligence for Nasopharyngeal Carcinoma Management - A Systematic Review. Cancer Manag Res 2022; 14:339-366. [PMID: 35115832 PMCID: PMC8801370 DOI: 10.2147/cmar.s341583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/25/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Nasopharyngeal carcinoma (NPC) is endemic to Eastern and South-Eastern Asia, and, in 2020, 77% of global cases were diagnosed in these regions. Apart from its distinct epidemiology, the natural behavior, treatment, and prognosis are different from other head and neck cancers. With the growing trend of artificial intelligence (AI), especially deep learning (DL), in head and neck cancer care, we sought to explore the unique clinical application and implementation direction of AI in the management of NPC. METHODS The search protocol was performed to collect publications using AI, machine learning (ML) and DL in NPC management from PubMed, Scopus and Embase. The articles were filtered using inclusion and exclusion criteria, and the quality of the papers was assessed. Data were extracted from the finalized articles. RESULTS A total of 78 articles were reviewed after removing duplicates and papers that did not meet the inclusion and exclusion criteria. After quality assessment, 60 papers were included in the current study. There were four main types of applications, which were auto-contouring, diagnosis, prognosis, and miscellaneous applications (especially on radiotherapy planning). The different forms of convolutional neural networks (CNNs) accounted for the majority of DL algorithms used, while the artificial neural network (ANN) was the most frequent ML model implemented. CONCLUSION There is an overall positive impact identified from AI implementation in the management of NPC. With improving AI algorithms, we envisage AI will be available as a routine application in a clinical setting soon.
Collapse
Affiliation(s)
- Wai Tong Ng
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barton But
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Horace C W Choi
- Department of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anne W M Lee
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor H F Lee
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fernando López
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, 33011, Spain
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Madrid, 28029, Spain
| | - Antti A Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, 33011, Spain
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Madrid, 28029, Spain
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond K Y Tsang
- Division of Otorhinolaryngology, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
12
|
Li S, Deng YQ, Zhu ZL, Hua HL, Tao ZZ. A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging. Diagnostics (Basel) 2021; 11:1523. [PMID: 34573865 PMCID: PMC8465998 DOI: 10.3390/diagnostics11091523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck, and improving the efficiency of its diagnosis and treatment strategies is an important goal. With the development of the combination of artificial intelligence (AI) technology and medical imaging in recent years, an increasing number of studies have been conducted on image analysis of NPC using AI tools, especially radiomics and artificial neural network methods. In this review, we present a comprehensive overview of NPC imaging research based on radiomics and deep learning. These studies depict a promising prospect for the diagnosis and treatment of NPC. The deficiencies of the current studies and the potential of radiomics and deep learning for NPC imaging are discussed. We conclude that future research should establish a large-scale labelled dataset of NPC images and that studies focused on screening for NPC using AI are necessary.
Collapse
Affiliation(s)
- Song Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Zhi-Ling Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hong-Li Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| |
Collapse
|