1
|
Abdullakutty F, Akbari Y, Al-Maadeed S, Bouridane A, Talaat IM, Hamoudi R. Histopathology in focus: a review on explainable multi-modal approaches for breast cancer diagnosis. Front Med (Lausanne) 2024; 11:1450103. [PMID: 39403286 PMCID: PMC11471683 DOI: 10.3389/fmed.2024.1450103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/12/2024] [Indexed: 01/11/2025] Open
Abstract
Precision and timeliness in breast cancer detection are paramount for improving patient outcomes. Traditional diagnostic methods have predominantly relied on unimodal approaches, but recent advancements in medical data analytics have enabled the integration of diverse data sources beyond conventional imaging techniques. This review critically examines the transformative potential of integrating histopathology images with genomic data, clinical records, and patient histories to enhance diagnostic accuracy and comprehensiveness in multi-modal diagnostic techniques. It explores early, intermediate, and late fusion methods, as well as advanced deep multimodal fusion techniques, including encoder-decoder architectures, attention-based mechanisms, and graph neural networks. An overview of recent advancements in multimodal tasks such as Visual Question Answering (VQA), report generation, semantic segmentation, and cross-modal retrieval is provided, highlighting the utilization of generative AI and visual language models. Additionally, the review delves into the role of Explainable Artificial Intelligence (XAI) in elucidating the decision-making processes of sophisticated diagnostic algorithms, emphasizing the critical need for transparency and interpretability. By showcasing the importance of explainability, we demonstrate how XAI methods, including Grad-CAM, SHAP, LIME, trainable attention, and image captioning, enhance diagnostic precision, strengthen clinician confidence, and foster patient engagement. The review also discusses the latest XAI developments, such as X-VARs, LeGrad, LangXAI, LVLM-Interpret, and ex-ILP, to demonstrate their potential utility in multimodal breast cancer detection, while identifying key research gaps and proposing future directions for advancing the field.
Collapse
Affiliation(s)
| | - Younes Akbari
- Department of Computer Science and Engineering, Qatar University, Doha, Qatar
| | - Somaya Al-Maadeed
- Department of Computer Science and Engineering, Qatar University, Doha, Qatar
| | - Ahmed Bouridane
- Computer Engineering Department, College of Computing and Informatics, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Dunenova G, Kalmataeva Z, Kaidarova D, Dauletbaev N, Semenova Y, Mansurova M, Grjibovski A, Kassymbekova F, Sarsembayev A, Semenov D, Glushkova N. The Performance and Clinical Applicability of HER2 Digital Image Analysis in Breast Cancer: A Systematic Review. Cancers (Basel) 2024; 16:2761. [PMID: 39123488 PMCID: PMC11311684 DOI: 10.3390/cancers16152761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
This systematic review aims to address the research gap in the performance of computational algorithms for the digital image analysis of HER2 images in clinical settings. While numerous studies have explored various aspects of these algorithms, there is a lack of comprehensive evaluation regarding their effectiveness in real-world clinical applications. We conducted a search of the Web of Science and PubMed databases for studies published from 31 December 2013 to 30 June 2024, focusing on performance effectiveness and components such as dataset size, diversity and source, ground truth, annotation, and validation methods. The study was registered with PROSPERO (CRD42024525404). Key questions guiding this review include the following: How effective are current computational algorithms at detecting HER2 status in digital images? What are the common validation methods and dataset characteristics used in these studies? Is there standardization of algorithm evaluations of clinical applications that can improve the clinical utility and reliability of computational tools for HER2 detection in digital image analysis? We identified 6833 publications, with 25 meeting the inclusion criteria. The accuracy rate with clinical datasets varied from 84.19% to 97.9%. The highest accuracy was achieved on the publicly available Warwick dataset at 98.8% in synthesized datasets. Only 12% of studies used separate datasets for external validation; 64% of studies used a combination of accuracy, precision, recall, and F1 as a set of performance measures. Despite the high accuracy rates reported in these studies, there is a notable absence of direct evidence supporting their clinical application. To facilitate the integration of these technologies into clinical practice, there is an urgent need to address real-world challenges and overreliance on internal validation. Standardizing study designs on real clinical datasets can enhance the reliability and clinical applicability of computational algorithms in improving the detection of HER2 cancer.
Collapse
Affiliation(s)
- Gauhar Dunenova
- Department of Epidemiology, Biostatistics and Evidence-Based Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Zhanna Kalmataeva
- Rector Office, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Dilyara Kaidarova
- Kazakh Research Institute of Oncology and Radiology, Almaty 050022, Kazakhstan;
| | - Nurlan Dauletbaev
- Department of Internal, Respiratory and Critical Care Medicine, Philipps University of Marburg, 35037 Marburg, Germany;
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Madina Mansurova
- Department of Artificial Intelligence and Big Data, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Andrej Grjibovski
- Central Scientific Research Laboratory, Northern State Medical University, Arkhangelsk 163000, Russia;
- Department of Epidemiology and Modern Vaccination Technologies, I.M. Sechenov First Moscow State Medical University, Moscow 105064, Russia
- Department of Biology, Ecology and Biotechnology, Northern (Arctic) Federal University, Arkhangelsk 163000, Russia
- Department of Health Policy and Management, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Fatima Kassymbekova
- Department of Public Health and Social Sciences, Kazakhstan Medical University “KSPH”, Almaty 050060, Kazakhstan;
| | - Aidos Sarsembayev
- School of Digital Technologies, Almaty Management University, Almaty 050060, Kazakhstan;
- Health Research Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Daniil Semenov
- Computer Science and Engineering Program, Astana IT University, Astana 020000, Kazakhstan;
| | - Natalya Glushkova
- Department of Epidemiology, Biostatistics and Evidence-Based Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Health Research Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
3
|
Wu S, Li X, Miao J, Xian D, Yue M, Liu H, Fan S, Wei W, Liu Y. Artificial intelligence for assisted HER2 immunohistochemistry evaluation of breast cancer: A systematic review and meta-analysis. Pathol Res Pract 2024; 260:155472. [PMID: 39053133 DOI: 10.1016/j.prp.2024.155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Accurate assessment of HER2 expression in tumor tissue is crucial for determining HER2-targeted treatment options. Nevertheless, pathologists' assessments of HER2 status are less objective than automated, computer-based evaluations. Artificial Intelligence (AI) promises enhanced accuracy and reproducibility in HER2 interpretation. This study aimed to systematically evaluate current AI algorithms for HER2 immunohistochemical diagnosis, offering insights to guide the development of more adaptable algorithms in response to evolving HER2 assessment practices. A comprehensive data search of the PubMed, Embase, Cochrane, and Web of Science databases was conducted using a combination of subject terms and free text. A total of 4994 computational pathology articles published from inception to September 2023 identifying HER2 expression in breast cancer were retrieved. After applying predefined inclusion and exclusion criteria, seven studies were selected. These seven studies comprised 6867 HER2 identification tasks, with two studies employing the HER2-CONNECT algorithm, two using the CNN algorithm, one with the multi-class logistic regression algorithm, and two using the HER2 4B5 algorithm. AI's sensitivity and specificity for distinguishing HER2 0/1+ were 0.98 [0.92-0.99] and 0.92 [0.80-0.97] respectively. For distinguishing HER2 2+, the sensitivity and specificity were 0.78 [0.50-0.92] and 0.98 [0.93-0.99], respectively. For HER2 3+ distinction, AI exhibited a sensitivity of 0.99 [0.98-1.00] and specificity of 0.99 [0.97-1.00]. Furthermore, due to the lack of HER2-targeted therapies for HER2-negative patients in the past, pathologists may have neglected to distinguish between HER2 0 and 1+, leaving room for improvement in the performance of artificial intelligence (AI) in this differentiation. AI excels in automating the assessment of HER2 immunohistochemistry, showing promising results despite slight variations in performance across different HER2 status. While incorporating AI algorithms into the pathology workflow for HER2 assessment poses challenges in standardization, application patterns, and ethical considerations, ongoing advancements suggest its potential as a widely effective tool for pathologists in clinical practice in the near future.
Collapse
Affiliation(s)
- Si Wu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China
| | - Xiang Li
- Medical Affairs Department, Betrue AI Lab, Guangzhou 510700, China
| | - Jiaxian Miao
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China
| | - Dongyi Xian
- Medical Affairs Department, Betrue AI Lab, Guangzhou 510700, China
| | - Meng Yue
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China
| | - Hongbo Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China
| | - Shishun Fan
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China
| | - Weiwei Wei
- Medical Affairs Department, Betrue AI Lab, Guangzhou 510700, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China.
| |
Collapse
|
4
|
Using Whole Slide Gray Value Map to Predict HER2 Expression and FISH Status in Breast Cancer. Cancers (Basel) 2022; 14:cancers14246233. [PMID: 36551720 PMCID: PMC9777488 DOI: 10.3390/cancers14246233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Accurate detection of HER2 expression through immunohistochemistry (IHC) is of great clinical significance in the treatment of breast cancer. However, manual interpretation of HER2 is challenging, due to the interobserver variability among pathologists. We sought to explore a deep learning method to predict HER2 expression level and gene status based on a Whole Slide Image (WSI) of the HER2 IHC section. When applied to 228 invasive breast carcinoma of no special type (IBC-NST) DAB-stained slides, our GrayMap+ convolutional neural network (CNN) model accurately classified HER2 IHC level with mean accuracy 0.952 ± 0.029 and predicted HER2 FISH status with mean accuracy 0.921 ± 0.029. Our result also demonstrated strong consistency in HER2 expression score between our system and experienced pathologists (intraclass correlation coefficient (ICC) = 0.903, Cohen's κ = 0.875). The discordant cases were found to be largely caused by high intra-tumor staining heterogeneity in the HER2 IHC group and low copy number in the HER2 FISH group.
Collapse
|
5
|
Sabitha P, Meeragandhi G. A dual stage AlexNet-HHO-DrpXLM archetype for an effective feature extraction, classification and prediction of liver cancer based on histopathology images. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Aguilera A, Pezoa R, Rodríguez-Delherbe A. A novel ensemble feature selection method for pixel-level segmentation of HER2 overexpression. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractClassifying histopathology images on a pixel-level requires sets of features able to capture the complex characteristics of the images, like the irregular cell morphology and the color heterogeneity on the tissue aspect. In this context, feature selection becomes a crucial step in the classification process such that it reduces model complexity and computational costs, avoids overfitting, and thereby it improves the model performance. In this study, we propose a new ensemble feature selection method by combining a set of base selectors, classifiers, and rank aggregation methods, aiming to determine from any initial set of handcrafted features, a smaller set of relevant color and texture pixel-level features, subsequently used for segmenting HER2 overexpression on a pixel-level, in breast cancer tissue images. We have been able to significantly reduce the set of initial features, using the proposed ensemble feature selection method. The best results are obtained using $$\chi ^2$$
χ
2
, Random Forest, and Runoff as the based selector, classifier, and aggregation method, respectively. The classification performance of the best model trained on the selected features set results in 0.939 recall, 0.866 specificity, 0.903 accuracy, 0.875 precision, and 0.906 F1-score.
Collapse
|