1
|
Czyzynska-Cichon I, Giergiel M, Kwiatkowski G, Kurpinska A, Wojnar-Lason K, Kaczara P, Szymonski M, Lekka M, Kalvins I, Zapotoczny B, Chlopicki S. Protein disulfide isomerase A1 regulates fenestration dynamics in primary mouse liver sinusoidal endothelial cells (LSECs). Redox Biol 2024; 72:103162. [PMID: 38669864 PMCID: PMC11068635 DOI: 10.1016/j.redox.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Protein disulfide isomerases (PDIs) are involved in many intracellular and extracellular processes, including cell adhesion and cytoskeletal reorganisation, but their contribution to the regulation of fenestrations in liver sinusoidal endothelial cells (LSECs) remains unknown. Given that fenestrations are supported on a cytoskeleton scaffold, this study aimed to investigate whether endothelial PDIs regulate fenestration dynamics in primary mouse LSECs. PDIA3 and PDIA1 were found to be the most abundant among PDI isoforms in LSECs. Taking advantage of atomic force microscopy, the effects of PDIA1 or PDIA3 inhibition on the fenestrations in LSECs were investigated using a classic PDIA1 inhibitor (bepristat) and novel aromatic N-sulfonamides of aziridine-2-carboxylic acid derivatives as PDIA1 (C-3389) or PDIA3 (C-3399) inhibitors. The effect of PDIA1 inhibition on liver perfusion was studied in vivo using dynamic contrast-enhanced magnetic resonance imaging. Additionally, PDIA1 inhibitors were examined in vitro in LSECs for effects on adhesion, cytoskeleton organisation, bioenergetics, and viability. Inhibition of PDIA1 with bepristat or C-3389 significantly reduced the number of fenestrations in LSECs, while inhibition of PDIA3 with C-3399 had no effect. Moreover, the blocking of free thiols by the cell-penetrating N-ethylmaleimide, but not by the non-cell-penetrating 4-chloromercuribenzenesulfonate, resulted in LSEC defenestration. Inhibition of PDIA1 did not affect LSEC adhesion, viability, and bioenergetics, nor did it induce a clear-cut rearrangement of the cytoskeleton. However, PDIA1-dependent defenestration was reversed by cytochalasin B, a known fenestration stimulator, pointing to the preserved ability of LSECs to form new pores. Importantly, systemic inhibition of PDIA1 in vivo affected intra-parenchymal uptake of contrast agent in mice consistent with LSEC defenestration. These results revealed the role of intracellular PDIA1 in the regulation of fenestration dynamics in LSECs, and in maintaining hepatic sinusoid homeostasis.
Collapse
Affiliation(s)
- Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Magdalena Giergiel
- Jagiellonian University, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Faculty of Medicine, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Marek Szymonski
- Jagiellonian University, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Malgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Ivars Kalvins
- Laboratory of Carbofunctional Compounds, Latvian Institute of Organic Synthesis, LV-1006, Riga, Latvia
| | - Bartlomiej Zapotoczny
- Jagiellonian University, Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Lojasiewicza 11, 30-348, Krakow, Poland; Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland.
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Faculty of Medicine, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
2
|
Wojnar-Lason K, Tyrankiewicz U, Kij A, Kurpinska A, Kaczara P, Kwiatkowski G, Wilkosz N, Giergiel M, Stojak M, Grosicki M, Mohaissen T, Jasztal A, Kurylowicz Z, Szymonski M, Czyzynska-Cichon I, Chlopicki S. Chronic heart failure induces early defenestration of liver sinusoidal endothelial cells (LSECs) in mice. Acta Physiol (Oxf) 2024; 240:e14114. [PMID: 38391060 DOI: 10.1111/apha.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
AIM Chronic heart failure (CHF) is often linked to liver malfunction and systemic endothelial dysfunction. However, whether cardio-hepatic interactions in heart failure involve dysfunction of liver sinusoidal endothelial cells (LSECs) is not known. Here we characterize LSECs phenotype in early and end stages of chronic heart failure in a murine model. METHODS Right ventricle (RV) function, features of congestive hepatopathy, and the phenotype of primary LSECs were characterized in Tgαq*44 mice, with cardiomyocyte-specific overexpression of the Gαq protein, at the age of 4- and 12-month representative for early and end-stage phases of CHF, respectively. RESULTS 4- and 12-month-old Tgαq*44 mice displayed progressive impairment of RV function and alterations in hepatic blood flow velocity resulting in hepatic congestion with elevated GGT and bilirubin plasma levels and decreased albumin concentration without gross liver pathology. LSECs isolated from 4- and 12-month-old Tgαq*44 mice displayed significant loss of fenestrae with impaired functional response to cytochalasin B, significant changes in proteome related to cytoskeleton remodeling, and altered vasoprotective function. However, LSECs barrier function and bioenergetics were largely preserved. In 4- and 12-month-old Tgαq*44 mice, LSECs defenestration was associated with prolonged postprandial hypertriglyceridemia and in 12-month-old Tgαq*44 mice with proteomic changes of hepatocytes indicative of altered lipid metabolism. CONCLUSION Tgαq*44 mice displayed right-sided HF and altered hepatic blood flow leading to LSECs dysfunction involving defenestration, shift in eicosanoid profile, and proteomic changes. LSECs dysfunction appears as an early and persistent event in CHF, preceding congestive hepatopathy and contributing to alterations in lipoprotein transport and CHF pathophysiology.
Collapse
Affiliation(s)
- Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Tyrankiewicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Natalia Wilkosz
- Faculty of Physics, Astronomy and Applied Computer Science, Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Krakow, Poland
- AGH University of Krakow, Krakow, Poland
| | - Magdalena Giergiel
- Faculty of Physics, Astronomy and Applied Computer Science, Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marek Szymonski
- Faculty of Physics, Astronomy and Applied Computer Science, Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
3
|
Jia B, Li S, Dong K, Lin H, Cheng B, Wang K. Three-Dimensional Pore Structure Characterization of Bituminous Coal and Its Relationship with Adsorption Capacity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5564. [PMID: 37629854 PMCID: PMC10456915 DOI: 10.3390/ma16165564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023]
Abstract
Bituminous coal reservoirs exhibit pronounced heterogeneity, which significantly impedes the production capacity of coalbed methane. Therefore, obtaining a thorough comprehension of the pore characteristics of bituminous coal reservoirs is essential for understanding the dynamic interaction between gas and coal, as well as ensuring the safety and efficiency of coal mine production. In this study, we conducted a comprehensive analysis of the pore structure and surface roughness of six bituminous coal samples (1.19% < Ro,max < 2.55%) using various atomic force microscopy (AFM) techniques. Firstly, we compared the microscopic morphology obtained through low-pressure nitrogen gas adsorption (LP-N2-GA) and AFM. It was observed that LP-N2-GA provides a comprehensive depiction of various pore structures, whereas AFM only allows the observation of V-shaped and wedge-shaped pores. Subsequently, the pore structure analysis of the coal samples was performed using Threshold and Chen's algorithms at ×200 and ×4000 magnifications. Our findings indicate that Chen's algorithm enables the observation of a greater number of pores compared to the Threshold algorithm. Moreover, the porosity obtained through the 3D algorithm is more accurate and closely aligns with the results from LP-N2-GA analysis. Regarding the effect of magnification, it was found that ×4000 magnification yielded a higher number of pores compared to ×200 magnification. The roughness values (Rq and Ra) obtained at ×200 magnification were 5-14 times greater than those at ×4000 magnification. Interestingly, despite the differences in magnification, the difference in porosity between ×200 and ×4000 was not significant. Furthermore, when comparing the results with the HP-CH4-GA experiment, it was observed that an increase in Ra and Rq values positively influenced gas adsorption, while an increase in Rsk and Rku values had an unfavorable effect on gas adsorption. This suggests that surface roughness plays a crucial role in gas adsorption behavior. Overall, the findings highlight the significant influence of different methods on the evaluation of pore structure. The 3D algorithm and ×4000 magnification provide a more accurate description of the pore structure. Additionally, the variation in 3D surface roughness was found to be related to coal rank and had a notable effect on gas adsorption.
Collapse
Affiliation(s)
- Bingyi Jia
- School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710000, China (H.L.)
- Xi’an Research Institute of China Coal Technology and Engineering Group Corp, Xi’an 710000, China
| | - Shugang Li
- School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710000, China (H.L.)
| | - Kui Dong
- Department of Geoscience and Engineering, Taiyuan University of Technology, Taiyuan 030000, China;
| | - Haifei Lin
- School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710000, China (H.L.)
| | - Bin Cheng
- School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710000, China (H.L.)
- Xi’an Research Institute of China Coal Technology and Engineering Group Corp, Xi’an 710000, China
| | - Kai Wang
- School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710000, China (H.L.)
- Chongqing Energy Investment Group Technology Co., Ltd., Chongqing 400000, China
| |
Collapse
|
4
|
Li N, Zhang X, Zhou J, Li W, Shu X, Wu Y, Long M. Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer. Adv Drug Deliv Rev 2022; 188:114448. [PMID: 35820602 DOI: 10.1016/j.addr.2022.114448] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/08/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
A growing body of multiscale biomechanical studies has been proposed to highlight the mechanical cues in the development of hepatic fibrosis and cancer. At the cellular level, changes in mechanical microenvironment induce phenotypic and functional alterations of hepatic cells, initiating a positive feedback loop that promotes liver fibrogenesis and hepatocarcinogenesis. Tumor mechanical microenvironment of hepatocellular carcinoma facilitates tumor cell growth and metastasis, and hinders the drug delivery and immunotherapy. At the molecular level, mechanical forces are sensed and transmitted into hepatic cells via allosteric activation of mechanoreceptors on the cell membrane, leading to the activation of various mechanotransduction pathways including integrin and YAP signaling and then regulating cell function. Thus, the application of mechanomedicine concept in the treatment of liver diseases is promising for rational design and cell-specific delivery of therapeutic drugs. This review mainly discusses the correlation between biomechanical cues and liver diseases from the viewpoint of mechanobiology.
Collapse
Affiliation(s)
- Ning Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|