1
|
Djemili R, Djemili I. Nonlinear and chaos features over EMD/VMD decomposition methods for ictal EEG signals detection. Comput Methods Biomech Biomed Engin 2024; 27:2091-2110. [PMID: 37861376 DOI: 10.1080/10255842.2023.2271603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
The detection and identification of epileptic seizures attracted considerable relevance for the neurophysiologists. In order to accomplish the detection of epileptic seizures or equivalently ictal EEG states, this paper proposes the use of nonlinear and chaos features not computed over the raw EEG signals as it was commonly experienced, but instead over intrinsic mode functions (IMFs) extracted subsequently to the application of newly time-frequency signal decomposition methods on the basis of empirical mode decomposition (EMD) and variational mode decomposition (VMD) methods. The first step within the proposed methodology is to excerpt the various components of the IMFs by EMD and VMD decomposition methods on time EEG segments. The Hjorth parameters, the Hurst exponent, the Recurrence Quantification Analysis (RQA), the detrended fluctuation analysis (DFA), the Largest Lyapunov Exponent (LLE), The Higuchi and Katz fractal dimensions (HFD and KFD), seven nonlinear and chaos features computed over the IMFs were investigated and their classification performances evaluated using the k-nearest neighbor (KNN) and the multilayer perceptron neural network (MLPNN) classifiers. Furthermore, the combination of the best nonlinear features has also been examined in terms of sensitivity, specificity and overall classification accuracy. The publicly available Bonn EEG dataset has been has been employed to validate the efficiency of the proposed method for detecting ictal EEG signals from normal or interictal EEG segments. Among the several experiments involved in the current study, the ultimate results establish that the overall classification accuracy can achieve 100%, 99.45%, 99.8%, 99.8%, 98.6% and 99.1% for six different epileptic seizure detection case problems studied, confirming the ability of the proposed methodology in helping the clinic practitioners in the epilepsy detection care units to classify seizure events with a great confidence.
Collapse
Affiliation(s)
| | - Ilyes Djemili
- Lab. Electrotech, Université 20 Août, Skikda, Algeria
| |
Collapse
|
2
|
Liu C, Chen W, Li M. A hybrid EEG classification model using layered cascade deep learning architecture. Med Biol Eng Comput 2024; 62:2213-2229. [PMID: 38507121 DOI: 10.1007/s11517-024-03072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The problem of multi-class classification is always a challenge in the field of EEG (electroencephalogram)-based seizure detection. The traditional studies focus on computing or learning a set of features from EEG to distinguish between different patterns. However, the extraction of characteristic information becomes increasingly difficult as the number of EEG types increases. To address this issue, a creative EEG classification technique is proposed by employing a principal component analysis network (PCANet) coupled with phase space reconstruction (PSR) and power spectrum density (PSD). We have introduced the PSR and PSD to prepare the inputs, where dynamic and frequency information are exposed from deep within PCANet. It is remarkable that a layered cascade strategy is designed to make a powerful deep learner according to the rule of one network vs one task (OVO). The proposed method has achieved greater effects than the individual models and shown superior performance in comparison with state-of-the-art algorithms, which present 98.0% of sensitivity, 99.90% of specificity, and 99.07% of accuracy. Our ensemble PCANet model works in an assembly line-like manner, obviating the need for hand-craft features. Results demonstrate that the proposed scheme can greatly enhances the accuracy and robustness of seizure detection from EEG signals.
Collapse
Affiliation(s)
- Chang Liu
- College of Communication Engineering, Jilin University, Ren Min Street 5988, Changchun, China
| | - Wanzhong Chen
- College of Communication Engineering, Jilin University, Ren Min Street 5988, Changchun, China
| | - Mingyang Li
- College of Communication Engineering, Jilin University, Ren Min Street 5988, Changchun, China.
| |
Collapse
|
3
|
Zhao W, Wang WF, Patnaik LM, Zhang BC, Weng SJ, Xiao SX, Wei DZ, Zhou HF. Residual and bidirectional LSTM for epileptic seizure detection. Front Comput Neurosci 2024; 18:1415967. [PMID: 38952709 PMCID: PMC11215953 DOI: 10.3389/fncom.2024.1415967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural network (ResNet) is tailored to adeptly extract the local spatial features of EEG signals. Subsequently, the acquired features are input into a bidirectional long short-term memory (BiLSTM) layer to model temporal dependencies. These output features are further processed through two fully connected layers to achieve the final epileptic seizure detection. The performance of ResBiLSTM is assessed on the epileptic seizure datasets provided by the University of Bonn and Temple University Hospital (TUH). The ResBiLSTM model achieves epileptic seizure detection accuracy rates of 98.88-100% in binary and ternary classifications on the Bonn dataset. Experimental outcomes for seizure recognition across seven epilepsy seizure types on the TUH seizure corpus (TUSZ) dataset indicate that the ResBiLSTM model attains a classification accuracy of 95.03% and a weighted F1 score of 95.03% with 10-fold cross-validation. These findings illustrate that ResBiLSTM outperforms several recent deep learning state-of-the-art approaches.
Collapse
Affiliation(s)
- Wei Zhao
- Chengyi College, Jimei University, Xiamen, China
| | - Wen-Feng Wang
- Shanghai Institute of Technology, Shanghai, China
- London Institute of Technology, International Academy of Visual Arts and Engineering, London, United Kingdom
| | | | | | - Su-Jun Weng
- Chengyi College, Jimei University, Xiamen, China
| | | | - De-Zhi Wei
- Chengyi College, Jimei University, Xiamen, China
| | - Hai-Feng Zhou
- Marine Engineering Institute, Jimei University, Xiamen, China
| |
Collapse
|
4
|
Saeedinia SA, Jahed-Motlagh MR, Tafakhori A, Kasabov NK. Diagnostic biomarker discovery from brain EEG data using LSTM, reservoir-SNN, and NeuCube methods in a pilot study comparing epilepsy and migraine. Sci Rep 2024; 14:10667. [PMID: 38724576 PMCID: PMC11082192 DOI: 10.1038/s41598-024-60996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
The study introduces a new online spike encoding algorithm for spiking neural networks (SNN) and suggests new methods for learning and identifying diagnostic biomarkers using three prominent deep learning neural network models: deep BiLSTM, reservoir SNN, and NeuCube. EEG data from datasets related to epilepsy, migraine, and healthy subjects are employed. Results reveal that BiLSTM hidden neurons capture biological significance, while reservoir SNN activities and NeuCube spiking dynamics identify EEG channels as diagnostic biomarkers. BiLSTM and reservoir SNN achieve 90 and 85% classification accuracy, while NeuCube achieves 97%, all methods pinpointing potential biomarkers like T6, F7, C4, and F8. The research bears implications for refining online EEG classification, analysis, and early brain state diagnosis, enhancing AI models with interpretability and discovery. The proposed techniques hold promise for streamlined brain-computer interfaces and clinical applications, representing a significant advancement in pattern discovery across the three most popular neural network methods for addressing a crucial problem. Further research is planned to study how early can these diagnostic biomarkers predict an onset of brain states.
Collapse
Affiliation(s)
| | | | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikola Kirilov Kasabov
- School of Engineering, Computing and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.
- Institute for Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
- Computer Science and Engineering Department, Dalian University, Dalian, China.
| |
Collapse
|
5
|
Liu X, Li C, Lou X, Kong H, Li X, Li Z, Zhong L. Epileptic seizure prediction based on EEG using pseudo-three-dimensional CNN. Front Neuroinform 2024; 18:1354436. [PMID: 38566773 PMCID: PMC10986364 DOI: 10.3389/fninf.2024.1354436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Epileptic seizures are characterized by their sudden and unpredictable nature, posing significant risks to a patient's daily life. Accurate and reliable seizure prediction systems can provide alerts before a seizure occurs, as well as give the patient and caregivers provider enough time to take appropriate measure. This study presents an effective seizure prediction method based on deep learning that combine with handcrafted features. The handcrafted features were selected by Max-Relevance and Min-Redundancy (mRMR) to obtain the optimal set of features. To extract the epileptic features from the fused multidimensional structure, we designed a P3D-BiConvLstm3D model, which is a combination of pseudo-3D convolutional neural network (P3DCNN) and bidirectional convolutional long short-term memory 3D (BiConvLstm3D). We also converted EEG signals into a multidimensional structure that fused spatial, manual features, and temporal information. The multidimensional structure is then fed into a P3DCNN to extract spatial and manual features and feature-to-feature dependencies, followed by a BiConvLstm3D input to explore temporal dependencies while preserving the spatial features, and finally, a channel attention mechanism is implemented to emphasize the more representative information in the multichannel output. The proposed has an average accuracy of 98.13%, an average sensitivity of 98.03%, an average precision of 98.30% and an average specificity of 98.23% for the CHB-MIT scalp EEG database. A comparison of the proposed model with other baseline methods was done to confirm the better performance of features through time-space nonlinear feature fusion. The results show that the proposed P3DCNN-BiConvLstm3D-Attention3D method for epilepsy prediction by time-space nonlinear feature fusion is effective.
Collapse
Affiliation(s)
- Xin Liu
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Chunyang Li
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xicheng Lou
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Haohuan Kong
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xinwei Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lisha Zhong
- School of Medical Information and Engineering, Southwest Medical University Luzhou, Luzhou, China
| |
Collapse
|
6
|
Zhou Q, Zhang S, Du Q, Ke L. RIHANet: A Residual-based Inception with Hybrid-Attention Network for Seizure Detection using EEG signals. Comput Biol Med 2024; 171:108086. [PMID: 38382383 DOI: 10.1016/j.compbiomed.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Increasing attention is being given to machine learning methods designed to aid clinicians in treatment selection. Therefore, this has aroused a heightened focus on the auto-detect system of epilepsy utilizing electroencephalogram(EEG) data. However, in order for the recognition model to accurately capture a wide range of features related to channel, frequency, and temporal information, it is necessary to have EEG data that is correctly represented. To tackle this challenge, we propose a Residual-based Inception with Hybrid-Attention Network(RIHANet) to achieve automatic seizure detection. Initially, by employing Empirical Mode Decomposition and Short-time Fourier Transform(EMD-STFT) for data processing, it can improve the quality of time-frequency representation of EEG. Additionally, by applying a novel Residual-based Inception to the network architecture, the detection model can learn local and global multiscale spatial-temporal features. Furthermore, the Hybrid Attention model designed is used to obtain relationships between EEG signals from multiple perspectives, including channels, sub-spaces, and global. Using four public datasets, the suggested approach outperforms the results in the most recent scholarly publications.
Collapse
Affiliation(s)
- Qiaoli Zhou
- School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China; School of Computer, Shenyang Aerospace University, Shenyang, 110136, Liaoning, China
| | - Shun Zhang
- School of Computer, Shenyang Aerospace University, Shenyang, 110136, Liaoning, China
| | - Qiang Du
- School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China
| | - Li Ke
- School of Electrical Engineering, Shenyang University of Technology, Shenyang, 110870, Liaoning, China.
| |
Collapse
|
7
|
Zhang Y, Li X, Wang S, Shen H, Huang K. A robust seizure detection and prediction method with feature selection and spatio-temporal casual neural network model. J Neural Eng 2023; 20:056036. [PMID: 37793368 DOI: 10.1088/1741-2552/acfff5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Objective.Epilepsy is a fairly common condition that affects the brain and causes frequent seizures. The sudden and recurring epilepsy brings a series of safety hazards to patients, which seriously affects the quality of their life. Therefore, real-time diagnosis of electroencephalogram (EEG) in epilepsy patients is of great significance. However, the conventional methods take in a tremendous amount of features to train the models, resulting in high computation cost and low portability. Our objective is to propose an efficient, light and robust seizure detecting and predicting algorithm.Approach.The algorithm is based on an interpretative feature selection method and spatial-temporal causal neural network (STCNN). The feature selection method eliminates the interference factors between different features and reduces the model size and training difficulties. The STCNN model takes both temporal and spatial information to accurately and dynamically track and diagnose the changing of the features. Considering the differences between medical application scenarios and patients, leave-one-out cross validation (LOOCV) and cross-patient validation (CPV) methods are used to conduct experiments on the dataset collected at the Children's Hospital Boston (CHB-MIT), Siena and Kaggle competition datasets.Main results.In LOOCV-based method, the detection accuracy and prediction sensitivity have been improved. A significant improvement is also achieved in the CPV-based method.Significance.The experimental results show that our proposed algorithm exhibits superior performance and robustness in seizure detection and prediction, which indicates it has higher capability to deal with different and complicated clinical situations.
Collapse
Affiliation(s)
- Yuanming Zhang
- Zhejiang University, 38 Zheda Road, Hangzhou, People's Republic of China
| | - Xin Li
- Zhejiang University, 38 Zheda Road, Hangzhou, People's Republic of China
| | - Shuang Wang
- Zhejiang University, 38 Zheda Road, Hangzhou, People's Republic of China
| | - Haibin Shen
- Zhejiang University, 38 Zheda Road, Hangzhou, People's Republic of China
| | - Kejie Huang
- Zhejiang University, 38 Zheda Road, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Soni S, Seal A, Mohanty SK, Sakurai K. Electroencephalography signals-based sparse networks integration using a fuzzy ensemble technique for depression detection. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Qin X, Xu D, Dong X, Cui X, Zhang S. EEG signal classification based on improved variational mode decomposition and deep forest. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Attention-based convolutional long short-term memory neural network for detection of patient-ventilator asynchrony from mechanical ventilation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Classification of EEG Signals for Prediction of Epileptic Seizures. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epilepsy is a common brain disorder that causes patients to face multiple seizures in a single day. Around 65 million people are affected by epilepsy worldwide. Patients with focal epilepsy can be treated with surgery, whereas generalized epileptic seizures can be managed with medications. It has been noted that in more than 30% of cases, these medications fail to control epileptic seizures, resulting in accidents and limiting the patient’s life. Predicting epileptic seizures in such patients prior to the commencement of an oncoming seizure is critical so that the seizure can be treated with preventive medicines before it occurs. Electroencephalogram (EEG) signals of patients recorded to observe brain electrical activity during a seizure can be quite helpful in predicting seizures. Researchers have proposed methods that use machine and/or deep learning techniques to predict epileptic seizures using scalp EEG signals; however, prediction of seizures with increased accuracy is still a challenge. Therefore, we propose a three-step approach. It includes preprocessing of scalp EEG signals with PREP pipeline, which is a more sophisticated alternative to basic notch filtering. This method uses a regression-based technique to further enhance the SNR, with a combination of handcrafted, i.e., statistical features such as temporal mean, variance, and skewness, and automated features using CNN, followed by classification of interictal state and preictal state segments using LSTM to predict seizures. We train and validate our proposed technique on the CHB-MIT scalp EEG dataset and achieve accuracy of 94%, sensitivity of 93.8%, and 91.2% specificity. The proposed technique achieves better sensitivity and specificity than existing methods.
Collapse
|
12
|
Tuncer E, Bolat ED. Channel based epilepsy seizure type detection from electroencephalography (EEG) signals with machine learning techniques. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Intelligent Diagnosis of Rolling Element Bearing Based on Refined Composite Multiscale Reverse Dispersion Entropy and Random Forest. SENSORS 2022; 22:s22052046. [PMID: 35271193 PMCID: PMC8914872 DOI: 10.3390/s22052046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022]
Abstract
Rolling bearings are the vital components of large electromechanical equipment, thus it is of great significance to develop intelligent fault diagnoses for them to improve equipment operation reliability. In this paper, a fault diagnosis method based on refined composite multiscale reverse dispersion entropy (RCMRDE) and random forest is developed. Firstly, rolling bearing vibration signals are adaptively decomposed by variational mode decomposition (VMD), and then the RCMRDE values of 25 scales are calculated for original signal and each decomposed component as the initial feature set. Secondly, based on the joint mutual information maximization (JMIM) algorithm, the top 15 sensitive features are selected as a new feature set and feed into random forest model to identify bearing health status. Finally, to verify the effectiveness and superiority of the presented method, actual data acquisition and analysis are performed on the bearing fault diagnosis experimental platform. These results indicate that the presented method can precisely diagnose bearing fault types and damage degree, and the average identification accuracy rate is 97.33%. Compared with the refine composite multiscale dispersion entropy (RCMDE) and multiscale dispersion entropy (MDE), the fault diagnosis accuracy is improved by 2.67% and 8.67%, respectively. Furthermore, compared with the RCMRDE method without VMD decomposition, the fault diagnosis accuracy is improved by 3.67%. Research results prove that a better feature extraction technique is proposed, which can effectively overcome the deficiency of existing entropy and significantly enhance the ability of fault identification.
Collapse
|