1
|
Hackshaw KV, Yao S, Bao H, de Lamo Castellvi S, Aziz R, Nuguri SM, Yu L, Osuna-Diaz MM, Brode WM, Sebastian KR, Giusti MM, Rodriguez-Saona L. Metabolic Fingerprinting for the Diagnosis of Clinically Similar Long COVID and Fibromyalgia Using a Portable FT-MIR Spectroscopic Combined with Chemometrics. Biomedicines 2023; 11:2704. [PMID: 37893078 PMCID: PMC10604557 DOI: 10.3390/biomedicines11102704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Post Acute Sequelae of SARS-CoV-2 infection (PASC or Long COVID) is characterized by lingering symptomatology post-initial COVID-19 illness that is often debilitating. It is seen in up to 30-40% of individuals post-infection. Patients with Long COVID (LC) suffer from dysautonomia, malaise, fatigue, and pain, amongst a multitude of other symptoms. Fibromyalgia (FM) is a chronic musculoskeletal pain disorder that often leads to functional disability and severe impairment of quality of life. LC and FM share several clinical features, including pain that often makes them indistinguishable. The aim of this study is to develop a metabolic fingerprinting approach using portable Fourier-transform mid-infrared (FT-MIR) spectroscopic techniques to diagnose clinically similar LC and FM. Blood samples were obtained from LC (n = 50) and FM (n = 50) patients and stored on conventional bloodspot protein saver cards. A semi-permeable membrane filtration approach was used to extract the blood samples, and spectral data were collected using a portable FT-MIR spectrometer. Through the deconvolution analysis of the spectral data, a distinct spectral marker at 1565 cm-1 was identified based on a statistically significant analysis, only present in FM patients. This IR band has been linked to the presence of side chains of glutamate. An OPLS-DA algorithm created using the spectral region 1500 to 1700 cm-1 enabled the classification of the spectra into their corresponding classes (Rcv > 0.96) with 100% accuracy and specificity. This high-throughput approach allows unique metabolic signatures associated with LC and FM to be identified, allowing these conditions to be distinguished and implemented for in-clinic diagnostics, which is crucial to guide future therapeutic approaches.
Collapse
Affiliation(s)
- Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA
| | - Siyu Yao
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.Y.); (H.B.); (S.d.L.C.); (S.M.N.); (M.M.G.); (L.R.-S.)
| | - Haona Bao
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.Y.); (H.B.); (S.d.L.C.); (S.M.N.); (M.M.G.); (L.R.-S.)
| | - Silvia de Lamo Castellvi
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.Y.); (H.B.); (S.d.L.C.); (S.M.N.); (M.M.G.); (L.R.-S.)
- Campus Sescelades, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Rija Aziz
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (W.M.B.); (K.R.S.)
| | - Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.Y.); (H.B.); (S.d.L.C.); (S.M.N.); (M.M.G.); (L.R.-S.)
| | - Lianbo Yu
- Center of Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Michelle M. Osuna-Diaz
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (W.M.B.); (K.R.S.)
| | - W. Michael Brode
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (W.M.B.); (K.R.S.)
| | - Katherine R. Sebastian
- Department of Internal Medicine, Dell Medical School, The University of Texas, 1601 Trinity St., Austin, TX 78712, USA; (R.A.); (M.M.O.-D.); (W.M.B.); (K.R.S.)
| | - M. Monica Giusti
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.Y.); (H.B.); (S.d.L.C.); (S.M.N.); (M.M.G.); (L.R.-S.)
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (S.Y.); (H.B.); (S.d.L.C.); (S.M.N.); (M.M.G.); (L.R.-S.)
| |
Collapse
|
2
|
Alkhuder K. Fourier-transform infrared spectroscopy: a universal optical sensing technique with auspicious application prospects in the diagnosis and management of autoimmune diseases. Photodiagnosis Photodyn Ther 2023; 42:103606. [PMID: 37187270 DOI: 10.1016/j.pdpdt.2023.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Autoimmune diseases (AIDs) are poorly understood clinical syndromes due to breakdown of immune tolerance towards specific types of self-antigens. They are generally associated with an inflammatory response mediated by lymphocytes T, autoantibodies or both. Ultimately, chronic inflammation culminates in tissue damages and clinical manifestations. AIDs affect 5% of the world population, and they represent the main cause of fatality in young to middle-aged females. In addition, the chronic nature of AIDs has a devastating impact on the patient's quality of life. It also places a heavy burden on the health care system. Establishing a rapid and accurate diagnosis is considered vital for an ideal medical management of these autoimmune disorders. However, for some AIDs, this task might be challenging. Vibrational spectroscopies, and more particularly Fourier-transform infrared (FTIR) spectroscopy, have emerged as universal analytical techniques with promising applications in the diagnosis of various types of malignancies and metabolic and infectious diseases. The high sensitivity of these optical sensing techniques and their minimal requirements for test reagents qualify them to be ideal analytical techniques. The aim of the current review is to explore the potential applications of FTIR spectroscopy in the diagnosis and management of most common AIDs. It also aims to demonstrate how this technique has contributed to deciphering the biochemical and physiopathological aspects of these chronic inflammatory diseases. The advantages that can be offered by this optical sensing technique over the traditional and gold standard methods used in the diagnosis of these autoimmune disorders have also been extensively discussed.
Collapse
|
3
|
Rapid Biomarker-Based Diagnosis of Fibromyalgia Syndrome and Related Rheumatologic Disorders by Portable FT-IR Spectroscopic Techniques. Biomedicines 2023; 11:biomedicines11030712. [PMID: 36979691 PMCID: PMC10044908 DOI: 10.3390/biomedicines11030712] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Fibromyalgia syndrome (FM), one of the most common illnesses that cause chronic widespread pain, continues to present significant diagnostic challenges. The objective of this study was to develop a rapid vibrational biomarker-based method for diagnosing fibromyalgia syndrome and related rheumatologic disorders (systemic lupus erythematosus (SLE), osteoarthritis (OA) and rheumatoid arthritis (RA)) through portable FT-IR techniques. Bloodspot samples were collected from patients diagnosed with FM (n = 122) and related rheumatologic disorders (n = 70), including SLE (n = 17), RA (n = 43), and OA (n = 10), and stored in conventional protein saver bloodspot cards. The blood samples were prepared by four different methods (blood aliquots, protein-precipitated extraction, and non-washed and water-washed semi-permeable membrane filtration extractions), and spectral data were collected with a portable FT-IR spectrometer. Pattern recognition analysis, OPLS-DA, was able to identify the signature profile and classify the spectra into corresponding classes (Rcv > 0.93) with excellent sensitivity and specificity. Peptide backbones and aromatic amino acids were predominant for the differentiation and might serve as candidate biomarkers for syndromes such as FM. This research evaluated the feasibility of portable FT-IR combined with chemometrics as an accurate and high-throughput tool for distinct spectral signatures of biomarkers related to the human syndrome (FM), which could allow for real-time and in-clinic diagnostics of FM.
Collapse
|
4
|
Seredin P, Goloshchapov D, Kashkarov V, Khydyakov Y, Nesterov D, Ippolitov I, Ippolitov Y, Vongsvivut J. Development of a Hybrid Biomimetic Enamel-Biocomposite Interface and a Study of Its Molecular Features Using Synchrotron Submicron ATR-FTIR Microspectroscopy and Multivariate Analysis Techniques. Int J Mol Sci 2022; 23:11699. [PMID: 36233001 PMCID: PMC9569639 DOI: 10.3390/ijms231911699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Using a biomimetic strategy and bioinspired materials, our work proposed a new technological approach to create a hybrid transitional layer between enamel and dental biocomposite. For this purpose, an amino acid booster conditioner based on a set of polar amino acids (lysine, arginine, hyaluronic acid), calcium alkali, and a modified adhesive based on BisGMA and nanocrystalline carbonate-substituted hydroxyapatite are used during dental enamel restoration. The molecular properties of the hybrid interface formed using the proposed strategy were understood using methods of multivariate statistical analysis of spectral information collected using the technique of synchrotron infrared microspectroscopy. The results obtained indicate the possibility of forming a bonding that mimics the properties of natural tissue with controlled molecular properties in the hybrid layer. The diffusion of the amino acid booster conditioner component, the calcium alkali, and the modified adhesive with nanocrystalline carbonate-substituted hydroxyapatite in the hybrid interface region creates a structure that should stabilize the reconstituted crystalline enamel layer. The developed technology can form the basis for an individualized, personalized approach to dental enamel restorations.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Yury Khydyakov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Dmitry Nesterov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia
| | - Jitraporn Vongsvivut
- Australian Synchrotron (Synchrotron Light Source Australia Pty Ltd.), 800 Blackburn Rd, Clayton, VIC 3168, Australia
| |
Collapse
|
5
|
Pullano SA, Marcianò G, Bianco MG, Oliva G, Rania V, Vocca C, Cione E, De Sarro G, Gallelli L, Romeo P, La Gatta A, Fiorillo AS. FT-IR Analysis of Structural Changes in Ketoprofen Lysine Salt and KiOil Caused by a Pulsed Magnetic Field. Bioengineering (Basel) 2022; 9:bioengineering9100503. [PMID: 36290471 PMCID: PMC9598906 DOI: 10.3390/bioengineering9100503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
High-intensity, low-frequency magnetic fields (MFs) have been widely used in the treatment of diseases and in drug delivery, even though they could induce structural changes in pharmacological molecules. Morphological changes in ketoprofen and KiOil were investigated through Fourier-transform infrared spectroscopy (FT-IR). Unsupervised principal component analysis was carried out for data clustering. Clinical validation on 22 patients with lower back pain was managed using diamagnetic therapy plus topical ketoprofen or KiOil. The Numerical Rating Scale (NRS) and Short-Form Health Survey 36 (SF-36) were used to evaluate clinical and functional response. Ketoprofen showed clear clustering among samples exposed to MF (4000−650 cm−1), and in the narrow frequency band (1675−1475 cm−1), results evidenced structural changes which involved other excipients than ketoprofen. KiOil has evidenced structural modifications in the subcomponents of the formulation. Clinical treatment with ketoprofen showed an average NRS of 7.77 ± 2.25 before and an average NRS of 2.45 ± 2.38 after MF treatment. There was a statistically significant reduction in NRS (p = 0.003) and in SF-36 (p < 0.005). Patients treated with KiOil showed an average NRS of 7.59 ± 2.49 before treatment and an average NRS of 1.90 ± 2.26 after treatment (p < 0.005). SF-36 showed statistical significance for all items except limitations due to emotional problems. A high-intensity pulsed magnetic field is an adjunct to topical treatment in patients with localized pain, and the effect of MF does not evidence significant effects on the molecules.
Collapse
Affiliation(s)
- Salvatore Andrea Pullano
- BATS Laboratory, Department of Health Sciences, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Gianmarco Marcianò
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, “Magna Græcia” University of Catanzaro, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Maria Giovanna Bianco
- Department of Surgical and Medical Sciences, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Oliva
- BATS Laboratory, Department of Health Sciences, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Rania
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, “Magna Græcia” University of Catanzaro, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Cristina Vocca
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, “Magna Græcia” University of Catanzaro, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy
- GalaScreen Laboratories, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy
- Medifarmagen SRL, University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, “Magna Græcia” University of Catanzaro, Mater Domini Hospital, 88100 Catanzaro, Italy
- FAS@UMG Research Center, Department of Health Sciences, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, “Magna Græcia” University of Catanzaro, Mater Domini Hospital, 88100 Catanzaro, Italy
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy
- GalaScreen Laboratories, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy
- Medifarmagen SRL, University of Catanzaro, 88100 Catanzaro, Italy
- FAS@UMG Research Center, Department of Health Sciences, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Pietro Romeo
- Department of Orthopedics, Istituto di Ricovero E Cura A Carattere Scientifico, Istituto Ortopedico Galeazzi, 20123 Milan, Italy
| | - Antonio La Gatta
- BATS Laboratory, Department of Health Sciences, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonino S. Fiorillo
- BATS Laboratory, Department of Health Sciences, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|