1
|
Semmad A, Bahoura M. Comparative study of respiratory sounds classification methods based on cepstral analysis and artificial neural networks. Comput Biol Med 2024; 171:108190. [PMID: 38387384 DOI: 10.1016/j.compbiomed.2024.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
In this paper, we investigated and evaluated various machine learning-based approaches for automatically detecting wheezing sounds. We conducted a comprehensive comparison of these proposed systems, assessing their classification performance through metrics such as Sensitivity, Specificity, and Accuracy. The main approach to developing a machine learning-based system for classifying respiratory sounds involved the combination of a technique for extracting features from an unknown input sound with a classification method to determine its belonging class. The characterization techniques used in this study are based on the cepstral analysis, which was extensively employed in the automatic speech recognition field. While MFCC (Mel-Frequency Cepstral Coefficients) feature extraction methods are commonly used in respiratory sounds classification, our study introduces a novelty by employing GFCC (Gammatone-Frequency Cepstral Coefficients) and BFCC (Bark-Frequency Cepstral Coefficients) for this purpose. For the classification task, we employed two types of neural networks: the MLP (Multilayer Perceptron), a feedforward neural network, and a variant of the LSTM (Long Short-Term Memory) recurrent neural network called BiLSTM (Bidirectional LSTM). The proposed classification systems are evaluated using a database consisting of 497 wheezing segments and 915 normal respiratory segments, which are recorded from individuals diagnosticated with asthma and individuals without any respiratory issues, respectively. The highest classification performance was achieved by the BFCC-BiLSTM model, which demonstrated an exceptional accuracy rate of 99.8%.
Collapse
Affiliation(s)
- Abdelkrim Semmad
- Department of Engineering, Université du Québec à Rimouski, 300, allée des Ursulines, Rimouski, Qc, Canada, G5L 3A1.
| | - Mohammed Bahoura
- Department of Engineering, Université du Québec à Rimouski, 300, allée des Ursulines, Rimouski, Qc, Canada, G5L 3A1.
| |
Collapse
|
2
|
Khalilzad Z, Tadj C. Use of psychoacoustic spectrum warping, decision template fusion, and neighborhood component analysis in newborn cry diagnostic systems. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:901-914. [PMID: 38310608 DOI: 10.1121/10.0024618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Dealing with newborns' health is a delicate matter since they cannot express needs, and crying does not reflect their condition. Although newborn cries have been studied for various purposes, there is no prior research on distinguishing a certain pathology from other pathologies so far. Here, an unsophisticated framework is proposed for the study of septic newborns amid a collective of other pathologies. The cry was analyzed with music inspired and speech processing inspired features. Furthermore, neighborhood component analysis (NCA) feature selection was employed with two goals: (i) Exploring how the elements of each feature set contributed to classification outcome; (ii) investigating to what extent the feature space could be compacted. The attained results showed success of both experiments introduced in this study, with 88.66% for the decision template fusion (DTF) technique and a consistent enhancement in comparison to all feature sets in terms of accuracy and 86.22% for the NCA feature selection method by drastically downsizing the feature space from 86 elements to only 6 elements. The achieved results showed great potential for identifying a certain pathology from other pathologies that may have similar effects on the cry patterns as well as proving the success of the proposed framework.
Collapse
Affiliation(s)
- Zahra Khalilzad
- Department of Electrical Engineering, École de Technologie Supérieur, Université du Québec, Montréal, Québec H3C 1K3, Canada
| | - Chakib Tadj
- Department of Electrical Engineering, École de Technologie Supérieur, Université du Québec, Montréal, Québec H3C 1K3, Canada
| |
Collapse
|
3
|
Liu H, Shi Y, Li A, Wang M. Multi-modal fusion network with intra- and inter-modality attention for prognosis prediction in breast cancer. Comput Biol Med 2024; 168:107796. [PMID: 38064843 DOI: 10.1016/j.compbiomed.2023.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Accurate breast cancer prognosis prediction can help clinicians to develop appropriate treatment plans and improve life quality for patients. Recent prognostic prediction studies suggest that fusing multi-modal data, e.g., genomic data and pathological images, plays a crucial role in improving predictive performance. Despite promising results of existing approaches, there remain challenges in effective multi-modal fusion. First, albeit a powerful fusion technique, Kronecker product produces high-dimensional quadratic expansion of features that may result in high computational cost and overfitting risk, thereby limiting its performance and applicability in cancer prognosis prediction. Second, most existing methods put more attention on learning cross-modality relations between different modalities, ignoring modality-specific relations that are complementary to cross-modality relations and beneficial for cancer prognosis prediction. To address these challenges, in this study we propose a novel attention-based multi-modal network to accurately predict breast cancer prognosis, which efficiently models both modality-specific and cross-modality relations without bringing in high-dimensional features. Specifically, two intra-modality self-attentional modules and an inter-modality cross-attentional module, accompanied by latent space transformation of channel affinity matrix, are developed to successfully capture modality-specific and cross-modality relations for efficient integration of genomic data and pathological images, respectively. Moreover, we design an adaptive fusion block to take full advantage of both modality-specific and cross-modality relations. Comprehensive experiment demonstrates that our method can effectively boost prognosis prediction performance of breast cancer and compare favorably with the state-of-the-art methods.
Collapse
Affiliation(s)
- Honglei Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Yi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Ao Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China.
| | - Minghui Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
4
|
Shih PJ, Shih HJ, Wang IJ, Chang SW. The extraction and application of antisymmetric characteristics of the cornea during air-puff perturbations. Comput Biol Med 2024; 168:107804. [PMID: 38070205 DOI: 10.1016/j.compbiomed.2023.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND A non-contact tonometer is used to measure intraocular pressure, and studies have primarily relied on apex displacements to assess corneal properties. However, previous studies have overlooked the asymmetric characteristics of lateral corneal perturbations, leading to a gap in understanding of the lateral mechanical properties and its application. METHOD To investigate these lateral perturbations, we designed an experiment to sequentially record the corneal profiles when two consecutive air-puffs were applied at the center of the same cornea within a short period. Moreover, we used modal decomposition to decompose anterior surface profiles into symmetric and antisymmetric modes to comprehensively analyze the asymmetric characteristics. To extract mechanical properties, we utilized high-pass frequency analysis (>250 Hz) to filter out noise and errors. RESULTS Symmetric modes between the two consecutive air-puffs exhibited major similarities during vibration; however, antisymmetric modes exhibited minor differences in lateral perturbations of asymmetric vibration. The antisymmetric modes might be related to air-puff misalignment and mechanical properties. Through applying frequency analysis, the mechanical properties could be proven at high frequencies and misalignment shown at low frequencies. Furthermore, we compared the corneal vibration profiles of 259 healthy participants and 50 patients with keratoconus. Their properties showed that the antisymmetric modes of the keratoconus group exhibited a completely opposite direction of deformation compared to that in the healthy group. CONCLUSIONS Our proposed algorithm not only extracts antisymmetric characteristics but also offers valuable insights into decompose misalignment and mechanical properties of healthy and keratoconus corneas, presenting a new perspective for corneal biomechanics.
Collapse
Affiliation(s)
- Po-Jen Shih
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Hua-Ju Shih
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Le VH, Minh TNT, Kha QH, Le NQK. A transfer learning approach on MRI-based radiomics signature for overall survival prediction of low-grade and high-grade gliomas. Med Biol Eng Comput 2023; 61:2699-2712. [PMID: 37432527 DOI: 10.1007/s11517-023-02875-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Lower-grade gliomas (LGG) can eventually progress to glioblastoma (GBM) and death. In the context of the transfer learning approach, we aimed to train and test an MRI-based radiomics model for predicting survival in GBM patients and validate it in LGG patients. From each patient's 704 MRI-based radiomics features, we chose seventeen optimal radiomics signatures in the GBM training set (n = 71) and used these features in both the GBM testing set (n = 31) and LGG validation set (n = 107) for further analysis. Each patient's risk score, calculated based on those optimal radiomics signatures, was chosen to represent the radiomics model. We compared the radiomics model with clinical, gene status models, and combined model integrating radiomics, clinical, and gene status in predicting survival. The average iAUCs of combined models in training, testing, and validation sets were respectively 0.804, 0.878, and 0.802, and those of radiomics models were 0.798, 0.867, and 0.717. The average iAUCs of gene status and clinical models ranged from 0.522 to 0.735 in all three sets. The radiomics model trained in GBM patients can effectively predict the overall survival of GBM and LGG patients, and the combined model improved this ability.
Collapse
Affiliation(s)
- Viet Huan Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang City, 65000, Vietnam
| | - Tran Nguyen Tuan Minh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Quang Hien Kha
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
6
|
Dagne H, S VP, Palanivel H, Yeshitila A, Benor S, Abera S, Abdi A. Advanced modeling and optimizing for surface sterilization process of grape vine ( Vitis vinifera) root stock 3309C through response surface, artificial neural network, and genetic algorithm techniques. Heliyon 2023; 9:e18628. [PMID: 37554794 PMCID: PMC10404695 DOI: 10.1016/j.heliyon.2023.e18628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
In vitro, sterilization is one of the key components for proceeding with plant tissue cultures. Since the effectiveness of sterilization has a direct impact on the culture's final outcomes, there is a crucial need for optimization of the sterilization process. However, compared with traditional optimizing methods, the use of computational approaches through artificial intelligence-based process modeling and optimization algorithms provides a precise optimal condition for in vitro culturing. This study aimed to optimise in vitro sterilization of grape rootstock 3309C using RSM, ANN, and genetic algorithm (GA) techniques. In this context, two output responses, namely, Clean Culture and Explant Viability, were optimised using the models developed by RSM and ANN, followed by a GA, to obtain a globally optimal solution. The most influential independent factors, such as HgCl2, NaOCl, AgNO3, and immersion time, were considered input variables. The significance of the developed models was investigated with statistical and non-statistical techniques and was optimised to determine the significance of selected inputs. The optimal clean culture of 91%, and the explant viability of 89% can be obtained from 1.62% NaOCl at a 13.96 min immersion time, according to MLP-NSGAII. Sensitivity analysis revealed that the clean culture and explant viability were less sensitive to AgNO3 and more sensitive to immersion time. Results showed that the differences between the GA predicted and validation data were significant after the performance validation of predicted and optimised sterilising agents with immersion time combinations were tested. In general, GA, a potent methodology, may open the door to the development of new computational methods in plant tissue culture.
Collapse
Affiliation(s)
- Habtamu Dagne
- Department of Biotechnology, Centre of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Venkatesa Prabhu S
- Department of Chemical Engineering, Centre of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Hemalatha Palanivel
- Department of Biotechnology, Centre of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Alazar Yeshitila
- Department of Biotechnology, Centre of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Solomon Benor
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Ethiopia
| | - Solomon Abera
- Department of Biotechnology, Centre of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Adugna Abdi
- Department of Biotechnology, Centre of Excellence for Biotechnology and Bioprocess, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Choi Y, Lee H. Interpretation of lung disease classification with light attention connected module. Biomed Signal Process Control 2023; 84:104695. [PMID: 36879856 PMCID: PMC9978539 DOI: 10.1016/j.bspc.2023.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/21/2022] [Accepted: 02/11/2023] [Indexed: 03/06/2023]
Abstract
Lung diseases lead to complications from obstructive diseases, and the COVID-19 pandemic has increased lung disease-related deaths. Medical practitioners use stethoscopes to diagnose lung disease. However, an artificial intelligence model capable of objective judgment is required since the experience and diagnosis of respiratory sounds differ. Therefore, in this study, we propose a lung disease classification model that uses an attention module and deep learning. Respiratory sounds were extracted using log-Mel spectrogram MFCC. Normal and five types of adventitious sounds were effectively classified by improving VGGish and adding a light attention connected module to which the efficient channel attention module (ECA-Net) was applied. The performance of the model was evaluated for accuracy, precision, sensitivity, specificity, f1-score, and balanced accuracy, which were 92.56%, 92.81%, 92.22%, 98.50%, 92.29%, and 95.4%, respectively. We confirmed high performance according to the attention effect. The classification causes of lung diseases were analyzed using gradient-weighted class activation mapping (Grad-CAM), and the performances of their models were compared using open lung sounds measured using a Littmann 3200 stethoscope. The experts' opinions were also included. Our results will contribute to the early diagnosis and interpretation of diseases in patients with lung disease by utilizing algorithms in smart medical stethoscopes.
Collapse
Affiliation(s)
- Youngjin Choi
- School of Industrial Management Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hongchul Lee
- School of Industrial Management Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Song W, Han J. Patch-level contrastive embedding learning for respiratory sound classification. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Dar JA, Srivastava KK, Ahmed Lone S. Design and development of hybrid optimization enabled deep learning model for COVID-19 detection with comparative analysis with DCNN, BIAT-GRU, XGBoost. Comput Biol Med 2022; 150:106123. [PMID: 36228465 PMCID: PMC9527202 DOI: 10.1016/j.compbiomed.2022.106123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/03/2022] [Accepted: 09/17/2022] [Indexed: 11/03/2022]
Abstract
The recent investigation has started for evaluating the human respiratory sounds, like voice recorded, cough, and breathing from hospital confirmed Covid-19 tools, which differs from healthy person's sound. The cough-based detection of Covid-19 also considered with non-respiratory and respiratory sounds data related with all declared situations. Covid-19 is respiratory disease, which is usually produced by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). However, it is more indispensable to detect the positive cases for reducing further spread of virus, and former treatment of affected patients. With constant rise in the COVID-19 cases, there has been a constant rise in the need of efficient and safe ways to detect an infected individual. With the cases multiplying constantly, the current detecting devices like RT-PCR and fast testing kits have become short in supply. An effectual Covid-19 detection model using devised hybrid Honey Badger Optimization-based Deep Neuro Fuzzy Network (HBO-DNFN) is developed in this paper. Here, the audio signal is considered as input for detecting Covid-19. The gaussian filter is applied to input signal for removing the noises and then feature extraction is performed. The substantial features, like spectral roll-off, spectral bandwidth, Mel frequency cepstral coefficients (MFCC), spectral flatness, zero crossing rate, spectral centroid, mean square energy and spectral contract are extracted for further processing. Finally, DNFN is applied for detecting Covid-19 and the deep leaning model is trained by designed hybrid HBO algorithm. Accordingly, the developed Hybrid HBO method is newly designed by incorporating Honey Badger optimization Algorithm (HBA) and Jaya algorithm. The performance of developed Covid-19 detection model is evaluated using three metrics, like testing accuracy, sensitivity and specificity. The developed Hybrid HBO-based DNFN is outpaced than other existing approaches in terms of testing accuracy, sensitivity and specificity of "0.9176, 0.9218 and 0. 9219". All the test results are validated with the k-fold cross validation method in order to make an assessment of the generalizability of these results. When k-fold value is 9, sensitivity of existing techniques and developed JHBO-based DNFN is 0.8982, 0.8816, 0.8938, and 0.9207. The sensitivity of developed approach is improved by means of gaussian filtering model. The specificity of DCNN is 0.9125, BI-AT-GRU is 0.8926, and XGBoost is 0.9014, while developed JHBO-based DNFN is 0.9219 in k-fold value 9.
Collapse
Affiliation(s)
- Jawad Ahmad Dar
- Department of Computer Science and Engineering, Mansarovar Global University, Madhya Pradesh, India.
| | - Kamal Kr Srivastava
- Department of Computer Science and Engineering, Mansarovar Global University, Madhya Pradesh, India.
| | - Sajaad Ahmed Lone
- Department of Computer Science and Engineering, Islamic University of Science and Technology, Kashmir, India.
| |
Collapse
|