1
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
2
|
Dutta B, Nigam VK, Panja AS, Shrivastava S, Bandopadhyay R. Statistical optimisation of esterase from Salinicoccus roseus strain RF1H and its potential application in synthetic dye decolorisation. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2010718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bhramar Dutta
- Department of Botany, The University of Burdwan, Bardhaman, India
| | - Vinod Kumar Nigam
- Department of Bio-Engineering, Birla Institute of Technology, Ranchi, India
| | - Anindya Sundar Panja
- Post-Graduate Department of Biotechnology and Biochemistry, Oriental Institute of Science and Technology, Burdwan, India
| | | | | |
Collapse
|
3
|
Statistical optimization of cultural medium composition of thermoalkalophilic lipase produced by a chemically induced mutant strain of Bacillus atrophaeus FSHM2. 3 Biotech 2019; 9:268. [PMID: 31218179 DOI: 10.1007/s13205-019-1789-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Extremophilic microbial derived lipases have been widely applied in different biotechnological processes due to their resistance to harsh conditions such as high salt concentration, elevated temperature, and extreme acidic or alkaline pH. The present study was designed to overproduce the halophilic, thermoalkalophilic lipase of Bacillus atrophaeus FSHM2 through chemically induced random mutagenesis and optimization of cultural medium components assisted by statistical experimental design. At first, improvement of lipase production ability of B. atrophaeus FSHM2 was performed through exposure of the wild bacterial strain to ethidium bromide for 5-90 min to obtain a suitable mutant of lipase producer (designated as EB-5, 4301.1 U/l). Afterwards, Plackett-Burman experimental design augmented to D-optimal design was employed to optimize medium components (olive oil, maltose, glucose, sucrose, tryptone, urea, (NH4)2SO4, NaCl, CaCl2, and ZnSO4) for lipase production by the EB-5 mutant. A maximum lipase production of 14,824.3 U/l was predicted in the optimum medium containing 5% of olive oil, 0.5% of glucose, 0.5% of sucrose, 2% of maltose, 2.5 g/l of yeast extract, 1.75 g/l of urea, 1.75 g/l of (NH4)2SO4, 2.5 g/l of tryptone, 2 g/l of NaCl, 1 g/l of CaCl2, and 1 g/l of ZnSO4. A mean value of 14,773 ± 576.9 U/l of lipase was acquired from real experiments.
Collapse
|
4
|
Ameri A, Shakibaie M, Soleimani-Kermani M, Faramarzi MA, Doostmohammadi M, Forootanfar H. Overproduction of thermoalkalophilic lipase secreted by Bacillus atrophaeus FSHM2 using UV-induced mutagenesis and statistical optimization of medium components. Prep Biochem Biotechnol 2019; 49:184-191. [DOI: 10.1080/10826068.2019.1566148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Atefeh Ameri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mozhde Soleimani-Kermani
- The Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Musa H, Hafiz Kasim F, Nagoor Gunny AA, Gopinath SCB, Azmier Ahmad M. Enhanced halophilic lipase secretion by Marinobacter litoralis SW-45 and its potential fatty acid esters release. J Basic Microbiol 2018; 59:87-100. [PMID: 30270443 DOI: 10.1002/jobm.201800382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 11/09/2022]
Abstract
An approach was made to enhance the halophilic lipase secretion by a newly isolated moderate halophilic Marinobacter litoralis SW-45, through the statistical optimization of Plackett-Burman (PB) experimental design and the Face Centered Central Composite Design (FCCCD). Initially, PB statistical design was used to screen the medium components and process parameters, while the One-factor-at-a-time technique was availed to find the optimum level of significant parameters. It was found that MgSO4 · 7H2 O, NaCl, agitation speed, FeSO4 · 7H2 O, yeast extract and KCl positively influence the halophilic lipase production, whereas temperature, carbon source (maltose), inducer (olive oil), inoculum size, and casein-peptone had a negative effect on enzyme production. The optimum level of halophilic lipase production was obtained at 3.0 g L-1 maltose, 1% (v/v) olive oil, 30 °C growth temperature and 4% inoculum volume (v/v). Further optimization by FCCCD was revealed 1.7 folds improvement in the halophilic lipase production from 0.603 U ml-1 to 1.0307 U ml-1 . Functional and biochemical characterizations displayed that the lipase was significantly active and stable in the pH ranges of 7.0-9.5, temperature (30-50 °C), and NaCl concentration (0-21%). The lipase was maximally active at pH 8.0, 12% (w/v) NaCl, and 50 °C temperature. Besides, M. litoralis SW-45 lipase was found to possess the promising industrial potential to be utilized as a biocatalyst for the esterification.
Collapse
Affiliation(s)
- Haliru Musa
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia.,Centre of Excellence for Biomass Utilization, School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Farizul Hafiz Kasim
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia.,Centre of Excellence for Biomass Utilization, School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Ahmad A Nagoor Gunny
- Centre of Excellence for Biomass Utilization, School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia.,Faculty of Engineering Technology, Department of Chemical Engineering Technology, Universiti Malaysia Perlis, Padang Besar, Perlis, Malaysia
| | - Subash C B Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebai, Penang, Malaysia
| |
Collapse
|
6
|
Navvabi A, Razzaghi M, Fernandes P, Karami L, Homaei A. Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Chuprom J, Bovornreungroj P, Ahmad M, Kantachote D, Enomoto T. Statistical optimization for the improved production of an extracellular alkaline nuclease by halotolerant Allobacillus halotolerans MSP69: Scale-up approach and its potential as flavor enhancer of fish sauce. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Patel G, Patil MD, Soni S, Khobragade TP, Chisti Y, Banerjee UC. Production of mycophenolic acid by Penicillium brevicompactum-A comparison of two methods of optimization. ACTA ACUST UNITED AC 2016; 11:77-85. [PMID: 28352543 PMCID: PMC5042303 DOI: 10.1016/j.btre.2016.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/20/2016] [Accepted: 07/30/2016] [Indexed: 11/29/2022]
Abstract
Medium optimization for MPA production using P. brevicompactum by one-factor-at-a-time and CCD methods. CCD afforded a 40% higher MPA titer than one-factor-at-a-time method. The titer was nearly 6-fold higher compared to un-optimized medium.
Production of mycophenolic acid (MPA) by submerged fermentation using the microfungus Penicillium brevicompactum MTCC 8010 is reported here. Screening experiments were used to identify: the suitable media composition; the optimal initial pH; and the optimal incubation temperature to maximize the production of MPA in batch cultures. The initial concentrations of the selected sources of carbon (glucose), nitrogen (peptone) and the precursors (methionine, glycine) were then optimized by: (1) one-at-a-time variation of factors; and (2) a central composite design (CCD) of experiments, in a 12-day batch culture at an initial pH of 5.0, an incubation temperature of 25 °C, and an agitation speed of 200 rpm. The medium optimized using the one-at-a-time variation yielded a peak MPA titer of 1232 ± 90 mg/L. The medium optimized by the CCD method yielded a 40% higher MPA titer of 1737 ± 55 mg/L. The latter value was nearly 9-fold greater than the titer achieved prior to optimization.
Collapse
Affiliation(s)
- Gopal Patel
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Mahesh D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Surbhi Soni
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Taresh P Khobragade
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| |
Collapse
|