1
|
Montipó S, Menegussi EB, Camassola M, Wallberg O, Galbe M. Total carbohydrate consumption through co-fermentation of agro-industrial waste: use of wild-type bacterial isolates specialized in the conversion of C-5 sugars to high levels of lactic acid with concomitant metabolization of toxic compounds. World J Microbiol Biotechnol 2024; 40:388. [PMID: 39567424 DOI: 10.1007/s11274-024-04202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Value-added bioproducts are linked to the expansion of lignocellulosic biorefineries based on agro-industrial waste and local economic growth. Thus, the aim of this study was to pretreat rice hull (RH), a highly recalcitrant biomass, with saturated steam and convert it to lactic acid (LA). Strategically, the individual fractions and the blend of detoxified liquor and water-insoluble solids were used as substrate in the simultaneous saccharification and co-fermentation (SSCF) by wild-type bacteria. The microbial consortium between Pediococcus acidilactici and Acetobacter cerevisiae enabled the metabolization of all the xylose contained in the liquor, as well as the consumption of all minor sugars when using the blend. Assays resulted in the production of 106.2 g L- 1 of LA. Furthermore, A. cerevisiae promoted complete degradation of 5-HMF/furfural in a short period of time. This study demonstrates the benefits provided by processes integration (SSCF/blend) employing high solids load (22% w/v), representing an innovative and economically interesting approach.
Collapse
Affiliation(s)
- Sheila Montipó
- Department of Chemical Engineering, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden.
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, 95070-560, Brazil.
| | | | - Marli Camassola
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, 95070-560, Brazil
| | - Ola Wallberg
- Department of Chemical Engineering, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden
| | - Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden
| |
Collapse
|
2
|
Paniagua-García AI, Garita-Cambronero J, González-Rojo S, Díez-Antolínez R. Optimization of lactic acid production from apple and tomato pomaces by thermotolerant bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121806. [PMID: 39003899 DOI: 10.1016/j.jenvman.2024.121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
The production of lactic acid (LA) through biomass fermentation represents a promising alternative to the chemical synthesis. The use of agri-food by-products as fermentable carbohydrate sources can improve process sustainability by reducing waste and valorizing residual biomass. This study assessed the use of apple and tomato pomaces for producing LA through fermentation using thermotolerant bacteria under aerobic and non-sterile conditions. Three bacteria were evaluated and Heyndrickxia coagulans DSM 2314 was selected for its ability to produce LA from hydrolyzates of apple pomace (APH) and tomato pomace (TPH). The fermentation conditions were optimized to maximize LA production from APH, TPH and a mixture of both hydrolyzates. Therefore, LA productions ranged from 36.98 ± 0.41 to 40.72 ± 0.43 g/L, with yields from 0.86 ± 0.02 to 1.01 ± 0.01 g/g. Yeast extract was necessary as a nitrogen source for fermenting APH, while TPH and the mixture of both hydrolyzates did not require any supplementation. Other nitrogen sources, such as wine lees, urea and NH3Cl, were tested for fermenting APH. However, mixing this hydrolyzate with TPH proved to be the most viable alternative. This study demonstrates the potential for valorizing apple and tomato pomaces into LA under feasible fermentation conditions.
Collapse
Affiliation(s)
- Ana I Paniagua-García
- Centre of Biofuels and Bioproducts. Agricultural Technological Institute of Castilla y León, Villarejo de Órbigo, E-24358, León, Spain.
| | - Jerson Garita-Cambronero
- Centre of Biofuels and Bioproducts. Agricultural Technological Institute of Castilla y León, Villarejo de Órbigo, E-24358, León, Spain
| | - Silvia González-Rojo
- Centre of Biofuels and Bioproducts. Agricultural Technological Institute of Castilla y León, Villarejo de Órbigo, E-24358, León, Spain; Department of Applied Chemistry and Physics, University of León, Campus de Vegazana s/n 24071, León, Spain
| | - Rebeca Díez-Antolínez
- Centre of Biofuels and Bioproducts. Agricultural Technological Institute of Castilla y León, Villarejo de Órbigo, E-24358, León, Spain
| |
Collapse
|
3
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
4
|
Olszewska-Widdrat A, Xiros C, Wallenius A, Schneider R, Rios da Costa Pereira LP, Venus J. Bioprocess optimization for lactic and succinic acid production from a pulp and paper industry side stream. Front Bioeng Biotechnol 2023; 11:1176043. [PMID: 37274162 PMCID: PMC10232882 DOI: 10.3389/fbioe.2023.1176043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
The effective and cheap production of platform chemicals is a crucial step towards the transition to a bio-based economy. In this work, biotechnological methods using sustainable, cheap, and readily available raw materials bring bio-economy and industrial microbiology together: Microbial production of two platform chemicals is demonstrated [lactic (LA) and succinic acid (SA)] from a non-expensive side stream of pulp and paper industry (fibre sludge) proposing a sustainable way to valorize it towards economically important monomers for bioplastics formation. This work showed a promising new route for their microbial production which can pave the way for new market expectations within the circular economy principles. Fibre sludge was enzymatically hydrolysed for 72 h to generate a glucose rich hydrolysate (100 g·L-1 glucose content) to serve as fermentation medium for Bacillus coagulans A 541, A162 strains and Actinobacillus succinogenis B1, as well as Basfia succiniciproducens B2. All microorganisms were investigated in batch fermentations, showing the ability to produce either lactic or succinic acid, respectively. The highest yield and productivities for lactic production were 0.99 g·g-1 and 3.75 g·L-1·h-1 whereas the succinic acid production stabilized at 0.77 g·g-1 and 1.16 g·L-1·h-1.
Collapse
Affiliation(s)
- Agata Olszewska-Widdrat
- Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | | | | | - Roland Schneider
- Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | | | - Joachim Venus
- Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
5
|
van der Hauwaert L, Regueira A, Selder L, Zeng AP, Mauricio-Iglesias M. Optimising bioreactor processes with in-situ product removal using mathematical programming: a case study for propionate production. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
7
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
8
|
Camesasca L, de Mattos JA, Vila E, Cebreiros F, Lareo C. Lactic acid production by Carnobacterium sp. isolated from a maritime Antarctic lake using eucalyptus enzymatic hydrolysate. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00643. [PMID: 34168965 PMCID: PMC8209079 DOI: 10.1016/j.btre.2021.e00643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Carnobacterium sp., a lactic acid bacterium isolated from a maritime Antarctic lake, was evaluated for lactic acid production from a lignocellulosic hydrolysate. Eucalyptus sawdust, a residue from pulp and paper industries, was subjected to alkaline pretreatment to enhance its enzymatic hydrolysis. Fermentations were performed without and with pH control using eucalyptus enzymatic hydrolysate containing a mixture of glucose and xylose sugars. The sugars were successfully converted into lactic acid in 24 h, resulting in 7.6 g/L of lactic acid and a product yield of 0.50 g/g for pH controlled at 6.5. Fed-batch fermentation performed at a controlled pH of 6.5 improved both the lactic acid production (30 g/L) and the biomass growth (4.2 g/L). l-lactic acid optical purity higher than 95 % was obtained. These results demonstrated the potential usage of Carnobacterium sp in l-lactic acid production from eucalyptus.
Collapse
Affiliation(s)
- Laura Camesasca
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| | - Juan Andrés de Mattos
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| | - Florencia Cebreiros
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| | - Claudia Lareo
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| |
Collapse
|
9
|
Kee SH, Chiongson JBV, Saludes JP, Vigneswari S, Ramakrishna S, Bhubalan K. Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories - A viable domain of circular economy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116311. [PMID: 33383425 DOI: 10.1016/j.envpol.2020.116311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Global increase in demand for food supply has resulted in surplus generation of wastes. What was once considered wastes, has now become a resource. Studies were carried out on the conversion of biowastes into wealth using methods such as extraction, incineration and microbial intervention. Agro-industry biowastes are promising sources of carbon for microbial fermentation to be transformed into value-added products. In the era of circular economy, the goal is to establish an economic system which aims to eliminate waste and ensure continual use of resources in a close-loop cycle. Biowaste collection is technically and economically practicable, hence it serves as a renewable carbon feedstock. Biowastes are commonly biotransformed into value-added materials such as bioethanol, bioplastics, biofuels, biohydrogen, biobutanol and biogas. This review reveals the recent developments on microbial transformation of biowastes into biotechnologically important products. This approach addresses measures taken globally to valorize waste to achieve low carbon economy. The sustainable use of these renewable resources is a positive approach towards waste management and promoting circular economy.
Collapse
Affiliation(s)
- Seng Hon Kee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Justin Brian V Chiongson
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines
| | - Jonel P Saludes
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City, Philippines; Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines; Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, 117581, Singapore
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, 11700, Penang, Malaysia.
| |
Collapse
|
10
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
11
|
Selder L, Sabra W, Jürgensen N, Lakshmanan A, Zeng AP. Co-cultures with integrated in situ product removal for lactate-based propionic acid production. Bioprocess Biosyst Eng 2020; 43:1027-1035. [PMID: 32055977 PMCID: PMC7196089 DOI: 10.1007/s00449-020-02300-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/20/2020] [Indexed: 12/01/2022]
Abstract
Propionic acid (PA) is a valuable organic acid for the food and feed industry, but no bioproduction at industrial scale exists so far. As product inhibition is a major burden for bioprocesses producing organic acids, in situ product removal (ISPR) is desirable. Here, we demonstrate a new strategy to produce PA with a co-culture coupled with ISPR using electrodialysis. Specifically, Bacillus coagulans first produces lactic acid (LA) from sugar(s) and LA is converted to PA using Veillonella criceti. Applying ISPR to the mentioned co-culture, the specific PA yield was increased from 0.35 to 0.39 g g−1 compared to no ISPR usage. Furthermore, the productivity was increased from 0.63 to 0.7 g L−1 h−1 by applying ISPR. Additionally, it was shown that co-consumption of xylose and glucose led to a higher PA productivity of 0.73 g L−1 h−1, although PA yield was only increased slightly up to 0.36 g g−1.
Collapse
Affiliation(s)
- Ludwig Selder
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Wael Sabra
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Nikolai Jürgensen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Alagappan Lakshmanan
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, 21073, Hamburg, Germany.
| |
Collapse
|
12
|
Cao J, Yu Z, Liu W, Zhao J, Zhang H, Zhai Q, Chen W. Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103643] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
13
|
Production and Purification of l-lactic Acid in Lab and Pilot Scales Using Sweet Sorghum Juice. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sweet sorghum juice (SSJ) was evaluated as fermentation substrate for the production of l-lactic acid. A thermophilic Bacillus coagulans isolate was selected for batch fermentations without the use of additional nutrients. The first batch of SSJ (Batch A) resulted on higher lactic acid concentration, yield and productivity with values of 78.75 g∙L−1, 0.78 g∙g−1 and 1.77 g∙L−1 h−1, respectively. Similar results were obtained when the process was transferred into the pilot scale (50 L), with corresponding values of 73 g∙L−1, 0.70 g∙g−1 and 1.47 g∙L−1 h−1. A complete downstream process scheme was developed in order to separate lactic acid from the fermentation components. Coarse and ultra-filtration were employed as preliminary separation steps. Mono- and bipolar electrodialysis, followed by chromatography and vacuum evaporation were subsequently carried out leading to a solution containing 905.8 g∙L−1 lactic acid, with an optical purity of 98.9%. The results of this study highlight the importance of the downstream process with respect to using SSJ for lactic acid production. The proposed downstream process constitutes a more environmentally benign approach to conventional precipitation methods.
Collapse
|
14
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|
15
|
Konuray G, Erginkaya Z. Potential Use of Bacillus coagulans in the Food Industry. Foods 2018; 7:foods7060092. [PMID: 29899254 PMCID: PMC6025323 DOI: 10.3390/foods7060092] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023] Open
Abstract
Probiotic microorganisms are generally considered to beneficially affect host health when used in adequate amounts. Although generally used in dairy products, they are also widely used in various commercial food products such as fermented meats, cereals, baby foods, fruit juices, and ice creams. Among lactic acid bacteria, Lactobacillus and Bifidobacterium are the most commonly used bacteria in probiotic foods, but they are not resistant to heat treatment. Probiotic food diversity is expected to be greater with the use of probiotics, which are resistant to heat treatment and gastrointestinal system conditions. Bacillus coagulans (B. coagulans) has recently attracted the attention of researchers and food manufacturers, as it exhibits characteristics of both the Bacillus and Lactobacillus genera. B. coagulans is a spore-forming bacterium which is resistant to high temperatures with its probiotic activity. In addition, a large number of studies have been carried out on the low-cost microbial production of industrially valuable products such as lactic acid and various enzymes of B. coagulans which have been used in food production. In this review, the importance of B. coagulans in food industry is discussed. Moreover, some studies on B. coagulans products and the use of B. coagulans as a probiotic in food products are summarized.
Collapse
Affiliation(s)
- Gözde Konuray
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| | - Zerrin Erginkaya
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| |
Collapse
|