1
|
Echakouri M, Henni A, Salama A. High-Frequency Pulsatile Parameterization Study for the Titania Ceramic Membrane Fouling Mitigation in Oily Wastewater Systems Using the Box-Behnken Response Surface Methodology. MEMBRANES 2022; 12:1198. [PMID: 36557105 PMCID: PMC9788362 DOI: 10.3390/membranes12121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
In this comprehensive study, a seven-channel ultrafiltration (UF) titania membrane was used to investigate the impact of the pulsatile cleaning process on the crossflow filtration system. Seventeen experimental runs were performed for different operating conditions with a transmembrane pressure (TMP) varying from 0.5 to 1.5 bar, a crossflow velocity (CFV) ranging from 0.5 to 1 m/s, and pulsatile parameters within an interval varying from 60 to 120 s with a duration of 0.8 s, and collecting membrane permeate flux and volume data. The optimized operating conditions revealed that a TMP of 1.5 bar, a CFV of 0.71 m/s, and a pulsatile cycle of 85 s were the best operating conditions to reach the highest steady permeability flux and volume of 302 LMH and 8.11 L, respectively. The UF ceramic membrane under the optimized inputs allowed for an oil-rejection ability of 99%. The Box-Behnken design (BBD) model was used to analyze the effect of crossflow operating conditions on the permeate flux and volume. The analysis of variance (ANOVA) indicated that the quadratic regression models were highly significant. At a 95% confidence interval, the optimum TMP significantly enhanced the flux and permeate volume simultaneously. The results also demonstrated a positive interaction between the TMP and the pulsatile process, enhancing the permeate flux with a slight impact on the permeate volume. At the same time, the interaction between the CFV and pulsatile flow improved the permeability and increased the permeate volume.
Collapse
|
2
|
Yue C, Chen Y, Zhang W, Zheng Y, Hu X, Shang B. Direct Purification of Digestate Using Polymeric Ultrafiltration Membranes: Influence of Materials on Filtration Behavior and Fouling Characteristics. MEMBRANES 2022; 12:882. [PMID: 36135901 PMCID: PMC9503509 DOI: 10.3390/membranes12090882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In-depth exploration of filtration behavior and fouling characteristics of polymeric ultrafiltration (UF) membranes can provide guidance for the selection of materials and the control of membrane fouling during the purification of digestate. In this study, four types of polymeric membranes, (polyethersulfone (PES), polysulfone (PS), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN)), were employed to filter digestate from swine manure. The results showed that the viscosity of the digestate dropped from 45.0 ± 11.3 mPa·s to 18.0 ± 9.8 mPa·s, with an increase in temperature from 30.0 °C to 45.0 °C. The four membrane fluxes all increased by more than 30%, with the cross flow velocity increasing from 1.0 m s−1 to 2.0 m s−1. During the batch experiments, the flux maintenance abilities of the membranes were in the order: PAN > PS > PVDF > PES. There were no significant differences in the effects of membrane materials on the removal of COD, TN, and TP (p < 0.05). For UV254 removal efficiency, PS showed the highest efficiency (68.6%), while PVDF showed the lowest efficiency (63.4%). The major fouling type was irreversible hydraulic fouling, and the main elements of scaling were C, O, S, and Ca. Pseudomonadales were the dominant bacteria in the PS (26.2%) and in the PVDF (51.4%) fouling layers, while Bacteroidales were the dominant bacteria in the PES (26.8%) and in the PAN (14.7%) fouling layers. The flux recovery rates (FRRs) of the cleaning methods can be arranged as follows: NaClO > NaOH > Citric acid ≈ Tap water. After NaClO cleaning, the PVDF membrance showed the highest FRR (73.1%), and the PAN membrane showed the lowest FRR (30.1%).
Collapse
Affiliation(s)
- Caide Yue
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuzhao Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Bin Shang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
3
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
4
|
Krishnan S, Nasrullah M, Kamyab H, Suzana N, Munaim MSA, Wahid ZA, Ali IH, Salehi R, Chaiprapat S. Fouling characteristics and cleaning approach of ultrafiltration membrane during xylose reductase separation. Bioprocess Biosyst Eng 2022; 45:1125-1136. [PMID: 35469027 DOI: 10.1007/s00449-022-02726-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Many operating parameters of ultrafiltration (UF) are playing a crucial role when using a polyethersulfone membrane to separate xylose reductase (XR) enzyme from reaction mixtures during xylitol synthesis. The present study focuses on the separation of XR enzyme using a cross-flow ultrafiltration (UF) membrane. The filtration process was analyzed using the three effective variables such as filtration time, cross-flow velocity (CFV), and the transmembrane pressure (TMP), which were ranging from 0 to 100 min, 0.52 to 1.2 cm/s and 1-1.6 bar, respectively. Then, using the resistance in series model, the hydraulic resistance for alkali chemical cleaning during XR separation was estimated. During separation, increased TMP showed a positive-flux effect as a driving force, however, fouling and polarized layer were more prominent under higher TMP. Increased CFV, on the other hand, was found more efficient in fouling control. In terms of the membrane cleaning techniques, an alkaline solution containing 0.1 M sodium hydroxide was shown to be the most effective substance in removing foulants from the membrane surface in this investigation. Cleaning with an alkaline solution resulted in a maximum flux recovery of 93% for xylose reductase separation. This work may serve as a useful guide to better understand the optimization parameters during XR separation and alleviating UF membrane fouling induced during XR separation.
Collapse
Affiliation(s)
- Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Gambang, Malaysia
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.,Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Noor Suzana
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Gambang, Malaysia
| | | | - Zularisam Ab Wahid
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Gambang, Malaysia
| | - Ismat H Ali
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Reza Salehi
- Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
5
|
Fardazad AM, Azadani LN. Multi objective optimization of the baffle parameters for a tubular membrane. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|