1
|
Biswa Sarma J, Mahanta S, Tanti B. Maximizing microbial activity and synergistic interaction to boost biofuel production from lignocellulosic biomass. Arch Microbiol 2024; 206:448. [PMID: 39470782 DOI: 10.1007/s00203-024-04172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Addressing global environmental challenges and meeting the escalating energy demands stand as two pivotal issues in the current landscape. Lignocellulosic biomass emerges as a promising renewable bio-energy source capable of fulfilling the world's energy requirements on a large scale. One of the most important steps in lowering reliance on fossil fuel and lessening environmental effect is turning lignocellulosic biomass into biofuel. As carbon-neutral substitutes for traditional fuel, biofuel offer a solution to environmental concerns compared to conventional fuel. Effective utilization of lignocellulosic biomass is imperative for sustainable development. Ongoing research focuses on exploring the potential of various microorganisms and their co-interactions to synthesize diverse biofuels from different starting materials, including lignocellulosic biomass. Co-culture techniques demonstrate resilience to nutrient scarcity and environmental fluctuations. By utilising a variety of carbon sources, microbes can enhance their adaptability to environmental stressors and potentially increase productivity through their symbiotic interactions. Furthermore, compared to single organism involvement, co-interactions allow faster execution of multistep processes. Lignocellulosic biomass serves as a primary substrate for pre-treatment, fermentation, and enzymatic hydrolysis processes. This review primarily delves into the pretreatment, enzymatic hydrolysis process and the biochemical pathways involved in converting lignocellulosic biomass into bioenergy.
Collapse
Affiliation(s)
- Janayita Biswa Sarma
- Department of Energy Engineering, Assam Science and Technology University, Jalukbari, Tetelia, Guwahati, 781011, Assam, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology, Guwahati, 781022, Assam, India.
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Jalukbari, Guwahati, 781014, Assam, India
| |
Collapse
|
2
|
Xiong L, Yu H, Zeng K, Li Y, Wei Y, Li H, Ji X. Whole genome analysis of Pseudomonas mandelii SW-3 and the insights into low-temperature adaptation. Folia Microbiol (Praha) 2024; 69:775-787. [PMID: 38051419 DOI: 10.1007/s12223-023-01117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Pseudomonas mandelii SW-3, isolated from the Napahai plateau wetland, can survive in cold environments. The mechanisms underlying the survival of bacteria in low temperatures and high altitudes are not yet fully understood. In this study, the whole genome of SW-3 was sequenced to identify the genomic features that may contribute to survival in cold environments. The results showed that the genome size of strain SW-3 was 6,538,059 bp with a GC content of 59%. A total of 67 tRNAs, a 34,110 bp prophage sequence, and a large number of metabolic genes were found. Based on 16S rRNA gene phylogeny and average nucleotide identity analysis among P. mandelii, SW-3 was identified as a strain belonging to P. mandelii. In addition, we clarified the mechanisms by which SW-3 survived in a cold environment, providing a basis for further investigation of host-phage interaction. P. mandelii SW-3 showed stress resistance mechanisms, including glycogen and trehalose metabolic pathways, and antisense transcriptional silencing. Furthermore, cold shock proteins and glucose 6-phosphate dehydrogenase may play pivotal roles in facilitating adaptation to cold environmental conditions. The genome-wide analysis provided us with a deeper understanding of the cold-adapted bacterium.
Collapse
Affiliation(s)
- Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Hang Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Kun Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
3
|
Li Z, Waghmare PR, Dijkhuizen L, Meng X, Liu W. Research advances on the consolidated bioprocessing of lignocellulosic biomass. ENGINEERING MICROBIOLOGY 2024; 4:100139. [PMID: 39629327 PMCID: PMC11611046 DOI: 10.1016/j.engmic.2024.100139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 12/07/2024]
Abstract
Lignocellulosic biomass is an abundant and renewable bioresource for the production of biofuels and biochemical products. The classical biorefinery process for lignocellulosic degradation and conversion comprises three stages, i.e., pretreatment, enzymatic saccharification, and fermentation. However, the complicated pretreatment process, high cost of cellulase production, and insufficient production performance of fermentation strains have restricted the industrialization of biorefinery. Consolidated bioprocessing (CBP) technology combines the process of enzyme production, enzymatic saccharification, and fermentation in a single bioreactor using a specific microorganism or a consortium of microbes and represents another approach worth exploring for the production of chemicals from lignocellulosic biomass. The present review summarizes the progress made in research of CBP technology for lignocellulosic biomass conversion. In this review, different CBP strategies in lignocellulose biorefinery are reviewed, including CBP with natural lignocellulose-degrading microorganisms as the chassis, CBP with biosynthetic microorganisms as the chassis, and CBP with microbial co-culturing systems. This review provides new perspectives and insights on the utilization of low-cost feedstock lignocellulosic biomass for production of biochemicals.
Collapse
Affiliation(s)
- Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, China
| | - Pankajkumar R. Waghmare
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, China
| | - Lubbert Dijkhuizen
- CarbExplore Research BV, Groningen, the Netherlands
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
4
|
Ciric M, Šaraba V, Budin C, de Boer T, Nikodinovic-Runic J. Polyurethane-Degrading Potential of Alkaline Groundwater Bacteria. MICROBIAL ECOLOGY 2023; 87:21. [PMID: 38153543 DOI: 10.1007/s00248-023-02338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Plastic waste is a global environmental burden and long-lasting plastic polymers, including ubiquitous and toxic polyurethanes (PUs), rapidly accumulate in the water environments. In this study, samples were collected from the three alkaline groundwater occurrences in the geotectonic regions of the Pannonian basin of northern Serbia (Torda and Slankamen Banja) and Inner Dinarides of western Serbia (Mokra Gora) with aim to isolate and identify bacteria with plastic- and lignocellulose-degrading potential, that could be applied to reduce the burden of environmental plastic pollution. The investigated occurrences belong to cold, mildly alkaline (pH: 7.6-7.9) brackish and hyperalkaline (pH: 11.5) fresh groundwaters of the SO4 - Na + K, Cl - Na + K and OH, Cl - Ca, Na + K genetic type. Full-length 16S rDNA sequencing, using Oxford Nanopore sequencing device, was performed with DNA extracted from colonies obtained by cultivation of all groundwater samples, as well as with DNA extracted directly from one groundwater sample. The most abundant genera belong to Pseudomonas, Acidovorax, Kocuria and Methylotenera. All screened isolates (100%) had the ability to grow on at least 3 of the tested plastic and lignocellulosic substrates, with 53.9% isolates degrading plastic substrate Impranil® DLN-SD (SD), a model compound for PUs degradation. Isolates degrading SD that were identified by partial 16S rDNA sequencing belong to the Stenotrophomonas, Pseudomonas, Paraburkholderia, Aeromonas, Vibrio and Acidovorax genera. Taking into account that plastics, including commonly produced PUs, are widespread in groundwater, identification of PUs-degrading bacteria may have potential applications in bioremediation of groundwater polluted with this polymer.
Collapse
Affiliation(s)
- Milica Ciric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Vladimir Šaraba
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Clémence Budin
- Microlife Solutions, Science Park 406, 1098XH, Amsterdam, The Netherlands
| | - Tjalf de Boer
- Microlife Solutions, Science Park 406, 1098XH, Amsterdam, The Netherlands
| | | |
Collapse
|
5
|
Dahal S, Hurst GB, Chourey K, Engle NL, Burdick LH, Morrell-Falvey JL, Tschaplinski TJ, Doktycz MJ, Pelletier DA. Mechanism for Utilization of the Populus-Derived Metabolite Salicin by a Pseudomonas- Rahnella Co-Culture. Metabolites 2023; 13:metabo13020140. [PMID: 36837758 PMCID: PMC9959693 DOI: 10.3390/metabo13020140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas fluorescens GM16 associates with Populus, a model plant in biofuel production. Populus releases abundant phenolic glycosides such as salicin, but P. fluorescens GM16 cannot utilize salicin, whereas Pseudomonas strains are known to utilize compounds similar to the aglycone moiety of salicin-salicyl alcohol. We propose that the association of Pseudomonas to Populus is mediated by another organism (such as Rahnella aquatilis OV744) that degrades the glucosyl group of salicin. In this study, we demonstrate that in the Rahnella-Pseudomonas salicin co-culture model, Rahnella grows by degrading salicin to glucose 6-phosphate and salicyl alcohol which is secreted out and is subsequently utilized by P. fluorescens GM16 for its growth. Using various quantitative approaches, we elucidate the individual pathways for salicin and salicyl alcohol metabolism present in Rahnella and Pseudomonas, respectively. Furthermore, we were able to establish that the salicyl alcohol cross-feeding interaction between the two strains on salicin medium is carried out through the combination of their respective individual pathways. The research presents one of the potential advantages of salicyl alcohol release by strains such as Rahnella, and how phenolic glycosides could be involved in attracting multiple types of bacteria into the Populus microbiome.
Collapse
Affiliation(s)
- Sanjeev Dahal
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN 37996, USA
- Department of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Gregory B. Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Leah H. Burdick
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Correspondence:
| |
Collapse
|
6
|
Wang Y, Li Z, Jin W, Mao S. Isolation and Characterization of Ruminal Yeast Strain with Probiotic Potential and Its Effects on Growth Performance, Nutrients Digestibility, Rumen Fermentation and Microbiota of Hu Sheep. J Fungi (Basel) 2022; 8:jof8121260. [PMID: 36547593 PMCID: PMC9781649 DOI: 10.3390/jof8121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Yeast strains are widely used in ruminant production. However, knowledge about the effects of rumen native yeasts on ruminants is limited. Therefore, this study aimed to obtain a rumen native yeast isolate and investigate its effects on growth performance, nutrient digestibility, rumen fermentation and microbiota in Hu sheep. Yeasts were isolated by picking up colonies from agar plates, and identified by sequencing the ITS sequences. One isolate belonging to Pichia kudriavzevii had the highest optical density among these isolates obtained. This isolate was prepared to perform an animal feeding trial. A randomized block design was used for the animal trial. Sixteen Hu sheep were randomly assigned to the control (CON, fed basal diet, n = 8) and treatment group (LPK, fed basal diet plus P. kudriavzevii, CFU = 8 × 109 head/d, n = 8). Sheep were housed individually and treated for 4 weeks. Compared to CON, LPK increased final body weight, nutrient digestibility and rumen acetate concentration and acetate-to-propionate ratio in sheep. The results of Illumina MiSeq PE 300 sequencing showed that LPK increased the relative abundance of lipolytic bacteria (Anaerovibrio spp. and Pseudomonas spp.) and probiotic bacteria (Faecalibacterium spp. and Bifidobacterium spp.). For rumen eukaryotes, LPK increased the genera associated with fiber degradation, including protozoan Polyplastron and fungus Pichia. Our results discovered that rumen native yeast isolate P. kudriavzevii might promote the digestion of fibers and lipids by modulating specific microbial populations with enhancing acetate-type fermentation.
Collapse
Affiliation(s)
- Yao Wang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihao Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Al Makishah NH, Elfarash AE. Molecular characterization of cellulase genes in Pseudomonas stutzeri. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
8
|
Liu Y, Tang Y, Gao H, Zhang W, Jiang Y, Xin F, Jiang M. Challenges and Future Perspectives of Promising Biotechnologies for Lignocellulosic Biorefinery. Molecules 2021; 26:5411. [PMID: 34500844 PMCID: PMC8433869 DOI: 10.3390/molecules26175411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Lignocellulose is a kind of renewable bioresource containing abundant polysaccharides, which can be used for biochemicals and biofuels production. However, the complex structure hinders the final efficiency of lignocellulosic biorefinery. This review comprehensively summarizes the hydrolases and typical microorganisms for lignocellulosic degradation. Moreover, the commonly used bioprocesses for lignocellulosic biorefinery are also discussed, including separated hydrolysis and fermentation, simultaneous saccharification and fermentation and consolidated bioprocessing. Among these methods, construction of microbial co-culturing systems via consolidated bioprocessing is regarded as a potential strategy to efficiently produce biochemicals and biofuels, providing theoretical direction for constructing efficient and stable biorefinery process system in the future.
Collapse
Affiliation(s)
- Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Yunhan Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Haiyan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (Y.L.); (Y.T.); (H.G.); (W.Z.); (M.J.)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|