1
|
Fernandes LMG, Carvalho-Silva JD, Ferreira-Santos P, Porto ALF, Converti A, Cunha MNCD, Porto TS. Valorization of agro-industrial residues using Aspergillus heteromorphus URM0269 for protease production: Characterization and purification. Int J Biol Macromol 2024; 273:133199. [PMID: 38885866 DOI: 10.1016/j.ijbiomac.2024.133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
This study aimed to produce, characterize and purify a protease from Aspergillus heteromorphus URM0269. After production by solid fermentation of wheat bran performed according to a central composite design, protease was characterized in terms of biochemical, kinetic, and thermodynamic parameters for further purification by chromatography. Proteolytic activity achieved a maximum value of 57.43 U/mL using 7.8 g of wheat bran with 40 % moisture. Protease displayed high stability in the pH and temperature ranges of 5.0-10.0 and 20-30 °C, respectively, and acted optimally at pH 7.0 and 50 °C. The enzyme, characterized as a serine protease, followed Michaelis-Menten kinetics with a maximum reaction rate of 140.0 U/mL and Michaelis constant of 11.6 mg/mL. Thermodynamic activation parameters, namely activation Gibbs free energy (69.79 kJ/mol), enthalpy (5.86 kJ/mol), and entropy (-214.39 J/mol.K) of the hydrolysis reaction, corroborated with kinetic modeling showing high affinity for azocasein. However, thermodynamic parameters suggested a reversible mechanism of unfolding. Purification by chromatography yielded a protease purification factor of 7.2, and SDS-PAGE revealed one protein band with a molecular mass of 14.7 kDa. Circular dichroism demonstrated a secondary structure made up of 45.6 % α-helices. These results show the great potential of this protease for future use in the industrial area.
Collapse
Affiliation(s)
- Lígia Maria Gonçalves Fernandes
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Jônatas de Carvalho-Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, As Lagoas, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), University of Vigo (Campus Auga), As Lagoas, Ourense 32004, Spain
| | - Ana Lúcia Figueiredo Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa University, via Opera Pia 15, Genoa 16145, Italy
| | - Márcia Nieves Carneiro da Cunha
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Tatiana Souza Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil.
| |
Collapse
|
2
|
de Almeida TT, Tschoeke BAP, Quecine MC, Tezzoto T, Gaziola SA, Azevedo RA, Piotto FA, Orlandelli RC, Dourado MN, Azevedo JL. Mechanisms of Mucor sp. CM3 isolated from the aquatic macrophyte Eichhornia crassipes (Mart.) Solms to increase cadmium bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93846-93861. [PMID: 37523087 DOI: 10.1007/s11356-023-29003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Bioremediation of toxic metals is a feasible and low-cost remediation tool to reduce metal contamination. Plant-fungus interactions can improve this technique. Eichhornia crassipes (Mart.) Solms is a macrophyte reported to bioremediate contaminated water. Thus, the present study aimed to isolate endophytic fungi from E. crassipes, select a highly cadmium (Cd) tolerant isolate and evaluate its bioremediation potential. This was evaluated by (1) the fungus tolerance and capacity to accumulate Cd; (2) Cd effects on cell morphology (using SEM and TEM) and on the fungal antioxidant defense system, as well as (3) the effect on model plant Solanum lycopersicum L. cultivar Calabash Rouge, inoculated with the endophyte fungus and exposed to Cd. Our results selected the endophyte Mucor sp. CM3, which was able to tolerate up to 1000 g/L of Cd and to accumulate 900 mg of Cd/g of biomass. Significant changes in Mucor sp. CM3 morphology were observed when exposed to high Cd concentrations, retaining this metal both in its cytoplasm and in its cell wall, which may be linked to detoxification and metal sequestration mechanisms related to the formation of Cd-GSH complexes. In addition, Cd stress induced the activation of all tested antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) - in this endophytic fungus. Moreover, when inoculated in tomato plants, this fungus promoted plant growth (in treatments without Cd) and induced an increased metal translocation to plant shoot, showing its potential to increase metal bioremediation. Therefore, this study indicates that the isolated endophyte Mucor sp. CM3 can be applied as a tool in different plant conditions, improving plant bioremediation and reducing the environmental damage caused by Cd, while also promoting plant growth in the absence of contaminants.
Collapse
Affiliation(s)
- Tiago Tognolli de Almeida
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303 - São Dimas, Piracicaba, SP, 13400-970, Brazil.
- Stricto Sensu Postgraduate Program in Environmental Sciences and Agricultural Sustainability, Dom Bosco Catholic University (UCDB), Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, 79117-900, Brazil.
| | - Bruno Augusto Prohmann Tschoeke
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Tiago Tezzoto
- Plant Production Department, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Salete Aparecida Gaziola
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Fernando Angelo Piotto
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Ravely Casarotti Orlandelli
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, Bloco H67, Maringá, PR, 87020-900, Brazil
| | - Manuella Nóbrega Dourado
- Postgraduate Program in Technological and Environmental Processes, University of Sorocaba (UNISO), Rod. Raposo Tavares, Km 92,5 - Vila Artura, Sorocaba, SP, 18023-000, Brazil
| | - João Lucio Azevedo
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303 - São Dimas, Piracicaba, SP, 13400-970, Brazil
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| |
Collapse
|
3
|
Alamnie G, Gessesse A, Bitew M, Dawud N, Andualem B, Girma A. Production and biochemical characterization of keratinase enzyme from
Bacillus subtilis
ES5 and its potential application in leather dehairing process: a clean leather tanning process. BIOTECHNOL BIOTEC EQ 2023; 37. [DOI: 10.1080/13102818.2023.2288691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2025] Open
Affiliation(s)
- Getachew Alamnie
- Department of Biological Sciences, College of Natural and Computational Science, Mekdela Amba University, Tuluawliya, Ethiopia
- Department of Industrial and Environmental Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Amare Gessesse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | | | | | - Berhanu Andualem
- Department of Industrial and Environmental Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Abayeneh Girma
- Department of Biological Sciences, College of Natural and Computational Science, Mekdela Amba University, Tuluawliya, Ethiopia
| |
Collapse
|
4
|
Zhai W, Li X, Duan X, Gou C, Wang L, Gao Y. Development of a microbial protease for composting swine carcasses, optimization of its production and elucidation of its catalytic hydrolysis mechanism. BMC Biotechnol 2022; 22:36. [PMID: 36443757 PMCID: PMC9703648 DOI: 10.1186/s12896-022-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dead swine carcass composting is an excellent method for harmless treatment and resource utilization of swine carcass. However, poor biodegradation ability of traditional composting results in poor harmless treatment effect. Researches report that the biodegradation ability of composting can be improved by inoculation with enzyme-producing microorganisms or by inoculation with enzyme preparations. At present, the researches on improving the efficiency of dead swine carcass composting by inoculating enzyme-producing microorganisms have been reported. However, no work has been reported on the development of enzyme preparations for dead swine carcass composting. METHODOLOGY The protease-producing strain was isolated by casein medium, and was identified by 16 S rRNA gene sequencing. The optimal fermentation conditions for maximum protease production were gradually optimized by single factor test. The extracellular protease was purified by ammonium sulfate precipitation and Sephadex G-75 gel exclusion chromatography. The potential for composting applications of the purified protease was evaluated by characterization of its biochemical properties. And based on amino acid sequence analysis, molecular docking and inhibition test, the catalytic hydrolysis mechanism of the purified protease was elucidated. RESULTS In this study, a microbial protease was developed for swine carcass composting. A protease-producing strain DB1 was isolated from swine carcass compositing and identified as Serratia marcescen. Optimum fermentation conditions for maximum protease production were 5 g/L glucose, 5 g/L urea, 1.5 mmol/L Mg2+, initial pH-value 8, inoculation amount 5%, incubation temperature 30 °C and 60 h of fermentation time. The specific activity of purified protease reached 1982.77 U/mg, and molecular weight of the purified protease was 110 kDa. Optimum pH and temperature of the purified protease were 8 and 50 °C, respectively, and it had good stability at high temperature and in alkaline environments. The purified protease was a Ser/Glu/Asp triad serine protease which catalyzed substrate hydrolysis by Glu, Arg, Ser, Asp and Tyr active residues. CONCLUSIONS In general, the microbial protease developed in this study was suitable for industrial production and has the potential to enhance composting at thermophilic stage. Moreover, the catalytic hydrolysis mechanism of the protease was further analyzed in this study.
Collapse
Affiliation(s)
- Wei Zhai
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xintian Li
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xinran Duan
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Changlong Gou
- grid.411647.10000 0000 8547 6673College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000 Inner Mongolia China
| | - Lixia Wang
- grid.9227.e0000000119573309Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 Jilin Province China
| | - Yunhang Gao
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| |
Collapse
|
5
|
Li X, Zhang Q, Xu Z, Jiang G, Gan L, Tian Y, Shi B. High-expression and characterization of a novel serine protease from Ornithinibacillus caprae L9 T with eco-friendly applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35996-36012. [PMID: 35060042 DOI: 10.1007/s11356-021-17495-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
In the current work, a novel thermophilic serine protease gene (P3862) from Ornithinibacillus caprae L9T was functionally expressed in Bacillus subtilis SCK6. The monomeric enzyme of about 29 kDa was purified to homogeneity with 43.91% of recovery and 2.81-folds of purification. Characterization of the purified protease revealed the optimum activity at pH 7 and 65 °C. The protease exhibited excellent activity and stability in the presence of Na+, Mg2+, Ca2+, ethanediol, n-hexane, Tween-20, Tween-80 and Triton X-100. P3862 displayed favorable caseinolytic activity, moderate keratinolytic activity but no collagenolytic activity. Besides, the homology model of P3862 possessed a globular configuration and characteristic of α/β hydrolase fold, and displayed stable interactions with casein, glycoprotein and keratin rather than collagen. Moreover, the crude enzyme could completely dehair goatskin within 6 h, resulting in decrease in BOD5, COD and TSS loads by 72.86, 74.07, and 73.79%, respectively, as compared with Na2S treatment. Biocatalytic applications revealed that it could effectively remove egg-stains from fabrics at 37 °C for 30 min with low supplementation (300 U/mL), and was able to degrade the feathers of duck and chicken. Overall, these outstanding properties make P3862 valuable in the development of environmentally friendly biotechnologies .
Collapse
Affiliation(s)
- Xiaoguang Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education and College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhe Xu
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Guangyang Jiang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Longzhan Gan
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yongqiang Tian
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Bi Shi
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education and College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
6
|
Mechri S, Bouacem K, Chalbi T, Khaled M, Allala F, Bouanane‐Darenfed A, Hacene H, Jaouadi B. A Taguchi design approach for the enhancement of a
detergent‐biocompatible
alkaline thermostable protease production by
Streptomyces mutabilis
strain
TN‐X30. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS) University of Sfax Sfax Tunisia
| | - Khelifa Bouacem
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB) University of Sciences and Technology Houari Boumediene (USTHB) Bab Ezzouar Algiers Algeria
- Department of Biochemistry and Microbiology, Faculty of Biological and Agricultural Sciences (FBAS) University Mouloud Mammeri of Tizi‐Ouzou (UMMTO) Tizi‐Ouzou Algeria
| | - Taha‐Bilel Chalbi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS) University of Sfax Sfax Tunisia
| | - Marwa Khaled
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS) University of Sfax Sfax Tunisia
| | - Fawzi Allala
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB) University of Sciences and Technology Houari Boumediene (USTHB) Bab Ezzouar Algiers Algeria
| | - Amel Bouanane‐Darenfed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB) University of Sciences and Technology Houari Boumediene (USTHB) Bab Ezzouar Algiers Algeria
| | - Hocine Hacene
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences (FSB) University of Sciences and Technology Houari Boumediene (USTHB) Bab Ezzouar Algiers Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS) University of Sfax Sfax Tunisia
| |
Collapse
|