1
|
Markov OV, Sen’kova AV, Mohamed IS, Shmendel EV, Maslov MA, Oshchepkova AL, Brenner EV, Mironova NL, Zenkova MA. Dendritic Cell-Derived Artificial Microvesicles Inhibit RLS 40 Lymphosarcoma Growth in Mice via Stimulation of Th1/Th17 Immune Response. Pharmaceutics 2022; 14:pharmaceutics14112542. [PMID: 36432733 PMCID: PMC9696603 DOI: 10.3390/pharmaceutics14112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cell-free antitumor vaccines represent a promising approach to immunotherapy of cancer. Here, we compare the antitumor potential of cell-free vaccines based on microvesicles derived from dendritic cells (DCs) with DC- and cationic-liposome-based vaccines using a murine model of drug-resistant lymphosarcoma RLS40 in vivo. The vaccines were the following: microvesicle vaccines—cytochalasin B-induced membrane vesicles (CIMVs) obtained from DCs loaded with total tumor RNA using cholesterol/spermine-containing cationic liposomes L or mannosylated liposomes ML; DC vaccines—murine DCs loaded with total tumor-derived RNA using the same liposomes; and liposomal vaccines—lipoplexes of total tumor-derived RNA with liposomes L or ML. Being non-hepatotoxic, CIMV- and DC-based vaccines administered subcutaneously exhibited comparable potential to stimulate highly efficient antitumor CTLs in vivo, whereas liposomal vaccines were 25% weaker CTL inducers. Nevertheless, the antitumor efficiencies of the different types of the vaccines were similar: sizes of tumor nodes and the number of liver metastases were significantly decreased, regardless of the vaccine type. Notably, the booster vaccination did not improve the overall antitumor efficacy of the vaccines under the study. CIMV- and DC- based vaccines more efficiently than liposome-based ones decreased mitotic activity of tumor cells and induced their apoptosis, stimulated accumulation of neutrophil inflammatory infiltration in tumor tissue, and had a more pronounced immunomodulatory activity toward the spleen and thymus. Administration of CIMV-, DC-, and liposome-based vaccines resulted in activation of Th1/Th17 cells as well as the induction of positive immune checkpoint 4-1BBL and downregulation of suppressive immune checkpoints in a raw PD-1 >>> TIGIT > CTLA4 > TIM3. We demonstrated that cell-free CIMV-based vaccines exhibited superior antitumor and antimetastatic activity in a tumor model in vivo. The obtained results can be considered as the basis for developing novel strategies for oncoimmunotherapy.
Collapse
Affiliation(s)
- Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-61
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Islam S. Mohamed
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Elena V. Shmendel
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Ave. 86, 119571 Moscow, Russia
| | - Mikhail A. Maslov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Ave. 86, 119571 Moscow, Russia
| | - Anastasiya L. Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Evgeniy V. Brenner
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Kim Y, Kim S, Hong CH, Hyun YS, Baek IC, Kim TG. Limited T-Cell-Stimulating Effect of Cytochalasin-B-Induced Membrane Vesicles Isolated from Artificial Antigen-Presenting Cells. Vaccines (Basel) 2022; 10:1877. [PMID: 36366388 PMCID: PMC9694503 DOI: 10.3390/vaccines10111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 09/10/2024] Open
Abstract
Artificial antigen-presenting cells (aAPCs) that stably express particular HLA and co-stimulatory molecules by gene transfer have been developed to effectively stimulate T cells. To investigate whether cytochalsin-B-induced membrane vesicles derived from aAPCs (AP-CIMVs) have similar antigen-presenting functions as a cell-free system, T cell responses to different types of antigen presentation were measured using Jurkat reporter cells. First, the aggregation of AP-CIMV, which affects the measurement of function, was inhibited by nuclease treatment to produce uniform AP-CIMVs. The Green fluorescent protein (GFP) expression in Jurkat reporter cells was induced in a dose-dependent manner in groups stimulated with anti-CD3 antibody-coated AP-CIMVs and aAPCs, and anti-CD3/CD28 Dynabead. When Jurkat reporter cells expressing specific T cell receptors were stimulated by AP-CIMVs and aAPCs loaded with CMV pp65 peptide, AP-CIMVs showed similar stimulatory effects to that by aAPC. However, when these Jurkat reporter cells were stimulated by aAPCs endogenously expressing CMV pp65 antigen and their AP-CIMVs, the GFP expression rate by AP-CIMVs was 8.4%, which was significantly lower than 53.2% by aAPCs. Although this study showed a limited T-cell-stimulating effect of AP-CIMVs on endogenously processed antigen presentation, these results provide useful information for the development of improved cell-free systems for T cell stimulation in the future.
Collapse
Affiliation(s)
- Yeongwon Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Sueon Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Cheol-Hwa Hong
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - You-Seok Hyun
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
3
|
Haney MJ, Yuan H, Shipley ST, Wu Z, Zhao Y, Pate K, Frank JE, Massoud N, Stewart PW, Perlmutter JS, Batrakova EV. Biodistribution of Biomimetic Drug Carriers, Mononuclear Cells, and Extracellular Vesicles, in Nonhuman Primates. Adv Biol (Weinh) 2022; 6:e2101293. [PMID: 34939369 PMCID: PMC8825682 DOI: 10.1002/adbi.202101293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Indexed: 02/03/2023]
Abstract
Discovery of novel drug delivery systems to the brain remains a key task for successful treatment of neurodegenerative disorders. Herein, the biodistribution of immunocyte-based carriers, peripheral blood mononuclear cells (PBMCs), and monocyte-derived EVs are investigated in adult rhesus macaques using longitudinal PET/MRI imaging. 64 Cu-labeled drug carriers are introduced via different routes of administration: intraperitoneal (IP), intravenous (IV), or intrathecal (IT) injection. Whole body PET/MRI (or PET/CT) images are acquired at 1, 24, and 48 h post injection of 64 Cu-labeled drug carriers, and standardized uptake values (SUVmean and SUVmax ) in the main organs are estimated. The brain retention for both types of carriers increases based on route of administration: IP < IV < IT. Importantly, a single IT injection of PBMCs produces higher brain retention compared to IT injection of EVs. In contrast, EVs show superior brain accumulation compared to the cells when administered via IP and IV routes, respectively. Finally, a comprehensive chemistry panel of blood samples demonstrates no cytotoxic effects of either carrier. Overall, living cells and EVs have a great potential to be used for drug delivery to the brain. When identifying the ideal drug carrier, the route of administration could make big differences in CNS drug delivery.
Collapse
Affiliation(s)
- Matthew J. Haney
- Center for NanotechFnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hong Yuan
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven T. Shipley
- Division of Comparative Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhanhong Wu
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yuling Zhao
- Center for NanotechFnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kelly Pate
- Division of Comparative Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan E. Frank
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicole Massoud
- Division of Comparative Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul W. Stewart
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel S. Perlmutter
- School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elena V. Batrakova
- Center for NanotechFnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;,Correspondence should be addressed to E.V.B. (), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7362, Phone: 919-537-3712
| |
Collapse
|