1
|
Utharn S, Jantaro S. The adc1 knockout with proC overexpression in Synechocystis sp. PCC 6803 induces a diversion of acetyl-CoA to produce more polyhydroxybutyrate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:6. [PMID: 38218963 PMCID: PMC10788017 DOI: 10.1186/s13068-024-02458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Lack of nutrients, in particular nitrogen and phosphorus, has been known in the field to sense glutamate production via 2-oxoglutarate and subsequently accelerate carbon storage, including glycogen and polyhydroxybutyrate (PHB), in cyanobacteria, but a few studies have focused on arginine catabolism. In this study, we first time demonstrated that gene manipulation on proC and adc1, related to proline and polyamine syntheses in arginine catabolism, had a significant impact on enhanced PHB production during late growth phase and nutrient-modified conditions. We constructed Synechocystis sp. PCC 6803 with an overexpressing proC gene, encoding Δ1pyrroline-5-carboxylate reductase in proline production, and adc1 disruption resulted in lower polyamine synthesis. RESULTS Three engineered Synechocystis sp. PCC 6803 strains, including a ProC-overexpressing strain (OXP), adc1 mutant, and an OXP strain lacking the adc1 gene (OXP/Δadc1), certainly increased the PHB accumulation under nitrogen and phosphorus deficiency. The possible advantages of single proC overexpression include improved PHB and glycogen storage in late phase of growth and long-term stress situations. However, on day 7 of treatment, the synergistic impact created by OXP/Δadc1 increased PHB synthesis by approximately 48.9% of dry cell weight, resulting in a shorter response to nutrient stress than the OXP strain. Notably, changes in proline and glutamate contents in engineered strains, in particular OXP and OXP/Δadc1, not only partially balanced the intracellular C/N metabolism but also helped cells acclimate under nitrogen (N) and phosphorus (P) stress with higher chlorophyll a content in comparison with wild-type control. CONCLUSIONS In Synechocystis sp. PCC 6803, overexpression of proC resulted in a striking signal to PHB and glycogen accumulation after prolonged nutrient deprivation. When combined with the adc1 disruption, there was a notable increase in PHB production, particularly in situations where there was a strong C supply and a lack of N and P.
Collapse
Affiliation(s)
- Suthira Utharn
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Eungrasamee K, Lindblad P, Jantaro S. Improved lipid production and component of mycosporine-like amino acids by co-overexpression of amt1 and aroB genes in Synechocystis sp. PCC6803. Sci Rep 2023; 13:19439. [PMID: 37945676 PMCID: PMC10636201 DOI: 10.1038/s41598-023-46290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Implementing homologous overexpression of the amt1 (A) and aroB (B) genes involved in ammonium transporter and the synthesis of mycosporine-like amino acids (MAAs) and aromatic amino acids, respectively, we created three engineered Synechocystis sp. PCC6803 strains, including Ox-A, Ox-B, and Ox-AB, to study the utilization of carbon and nitrogen in cyanobacteria for the production of valuable products. With respect to amt1 overexpression, the Ox-A and Ox-AB strains had a greater growth rate under (NH4)2SO4 supplemented condition. Both the higher level of intracellular accumulation of lipids in Ox-A and Ox-AB as well as the increased secretion of free fatty acids from the Ox-A strain were impacted by the late-log phase of cell growth. It is noteworthy that among all strains, the Ox-B strain undoubtedly spotted a substantial accumulation of glycogen as a consequence of aroB overexpression. Additionally, the ammonium condition drove the potent antioxidant activity in Ox strains with a late-log phase, particularly in the Ox-B and Ox-AB strains. This was probably related to the altered MAA component inside the cells. The higher proportion of P4-fraction was induced by the ammonium condition in both Ox-B and Ox-AB, while the noted increase of the P1 component was found in the Ox-A strain.
Collapse
Affiliation(s)
- Kamonchanock Eungrasamee
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Imbimbo P, D’Elia L, Corrado I, Alvarez-Rivera G, Marzocchella A, Ibáñez E, Pezzella C, Branco dos Santos F, Monti DM. An Alternative Exploitation of Synechocystis sp. PCC6803: A Cascade Approach for the Recovery of High Added-Value Products. Molecules 2023; 28:molecules28073144. [PMID: 37049907 PMCID: PMC10095798 DOI: 10.3390/molecules28073144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Microalgal biomass represents a very interesting biological feedstock to be converted into several high-value products in a biorefinery approach. In this study, the cyanobacterium Synechocystis sp. PCC6803 was used to obtain different classes of molecules: proteins, carotenoids and lipids by using a cascade approach. In particular, the protein extract showed a selective cytotoxicity towards cancer cells, whereas carotenoids were found to be active as antioxidants both in vitro and on a cell-based model. Finally, for the first time, lipids were recovered from Synechocystis biomass as the last class of molecules and were successfully used as an alternative substrate for the production of polyhydroxyalkanoate (PHA) by the native PHA producer Pseudomonas resinovorans. Taken together, our results lead to a significant increase in the valorization of Synechocystis sp. PCC6803 biomass, thus allowing a possible offsetting of the process costs.
Collapse
Affiliation(s)
- Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Luigi D’Elia
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Iolanda Corrado
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Antonio Marzocchella
- Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Cinzia Pezzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Filipe Branco dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| |
Collapse
|
4
|
Tharasirivat V, Jantaro S. Increased Biomass and Polyhydroxybutyrate Production by Synechocystis sp. PCC 6803 Overexpressing RuBisCO Genes. Int J Mol Sci 2023; 24:ijms24076415. [PMID: 37047389 PMCID: PMC10094337 DOI: 10.3390/ijms24076415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
The overexpression of the RuBisCO (rbc) gene has recently become an achievable strategy for increasing cyanobacterial biomass and overcoming the biocompound production restriction. We successfully constructed two rbc-overexpressing Synechocystis sp. PCC 6803 strains (OX), including a strain overexpressing a large subunit of RuBisCO (OXrbcL) and another strain overexpressing all large, chaperone, and small subunits of RuBisCO (OXrbcLXS), resulting in higher and faster growth than wild type under sodium bicarbonate supplementation. This increased biomass of OX strains significantly contributed to the higher polyhydroxybutyrate (PHB) production induced by nutrient-deprived conditions, in particular nitrogen (N) and phosphorus (P). As a result of higher PHB contents in OX strains occurring at days 7 and 9 of nutrient deprivation, this enhancement was apparently made possible by cells preferentially maintaining their internal lipids while accumulating less glycogen. The OXrbcLXS strain, with the highest level of PHB at about 39 %w/dry cell weight (DCW) during 7 days of BG11-NP treatment, contained a lower glycogen level (31.9 %w/DCW) than wild type control (40 %w/DCW). In contrast, the wild type control strain exposed to N- and NP-stresses tended to retain lipid levels and store more glycogen than PHB. In this model, we, for the first time, implemented a RuBisCO-overexpressing cyanobacterial factory for overproducing PHB, destined for biofuel and biomaterial biotechnology.
Collapse
|
5
|
Djebaili R, Mignini A, Vaccarelli I, Pellegrini M, Spera DM, Del Gallo M, D’Alessandro AM. Polyhydroxybutyrate-producing cyanobacteria from lampenflora: The case study of the “Stiffe” caves in Italy. Front Microbiol 2022; 13:933398. [PMID: 35966678 PMCID: PMC9366245 DOI: 10.3389/fmicb.2022.933398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to estimate the green formation lampenflora of “Stiffe” caves in order to evaluate their suitability as an isolation source of cyanobacteria useful for the production of polyhydroxyalkanoates (PHAs). The cave system was chosen as the sampling site due to its touristic use and the presence of high-impact illuminations. The biofilms and the mats of the illuminated walls were sampled. Samples were investigated by 16S rRNA gene analysis and culturable cyanobacteria isolation. The isolated strains were then screened for the production of PHAs under typical culturing and nutritional starvation. Cultures were checked for PHA accumulation, poly-β-hydroxybutyrate (PHB) presence (infrared spectroscopy), and pigment production. The 16S rRNA gene metabarcoding. Highlighted a considerable extent of the pressure exerted by anthropogenic activities. However, the isolation yielded eleven cyanobacteria isolates with good PHA (mainly PHB)-producing abilities and interesting pigment production rates (chlorophyll a and carotenoids). Under normal conditions (BG110), the accumulation abilities ranged from 266 to 1,152 ng mg dry biomass–1. The optimization of bioprocesses through nutritional starvation resulted in a 2.5-fold increase. Fourier transform infrared (FTIR) studies established the occurrence of PHB within PHAs extracted by cyanobacteria isolates. The comparison of results with standard strains underlined good production rates. For C2 and C8 strains, PHA accumulation rates under starvation were higher than Azospirillum brasilense and similar to Synechocystis cf. salina 192. This study broadened the knowledge of the microbial communities of mats and biofilms on the lightened walls of the caves. These findings suggested that these structures, which are common in tourist caves, could be used to isolate valuable strains before remediation measures are adopted.
Collapse
Affiliation(s)
- Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Amedeo Mignini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ilaria Vaccarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Marika Pellegrini,
| | | | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Anna Maria D’Alessandro,
| |
Collapse
|
6
|
Cyanobacteria: Model Microorganisms and Beyond. Microorganisms 2022; 10:microorganisms10040696. [PMID: 35456747 PMCID: PMC9025173 DOI: 10.3390/microorganisms10040696] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a common feature of microorganisms, is detailed and the role of cell diffusion in bacterial colonization is described. Then, the discussion is narrowed down to cyanobacterium Synechocystis, as a lab model microorganism. In this relation, the morphology of Synechocystis is discussed and its different elements are detailed. Type IV pili, the complex multi-protein apparatus for motility and cell-cell adhesion in Synechocystis is described and the underlying function of its different elements is detailed. The phototaxis behavior of the cells, in response to homogenous or directional illumination, is reported and its relation to the run and tumble statistics of the cells is emphasized. In Synechocystis suspensions, there may exist a reciprocal interaction between the cell and the carrying fluid. The effects of shear flow on the growth, doubling per day, biomass production, pigments, and lipid production of Synechocystis are reported. Reciprocally, the effects of Synechocystis presence and its motility on the rheological properties of cell suspensions are addressed. This review only takes up the general grounds of cyanobacteria and does not get into the detailed biological aspects per se. Thus, it is substantially more comprehensive in that sense than other reviews that have been published in the last two decades. It is also written not only for the researchers in the field, but for those in physics and engineering, who may find it interesting, useful, and related to their own research.
Collapse
|