1
|
Liu L, Wang Q, Wu L, Zhang L, Huang Y, Yang H, Guo L, Fang Z, Wang X. Overexpression of POLA2 in hepatocellular carcinoma is involved in immune infiltration and predicts a poor prognosis. Cancer Cell Int 2023; 23:138. [PMID: 37452331 PMCID: PMC10349470 DOI: 10.1186/s12935-023-02949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second malignancy worldwide. POLA2 initiates DNA replication, regulates cell cycle and gene repair that promote tumorigenesis and disease progression. However, the prognostic and biological function roles of POLA2 in HCC had not been conclusively determined. METHODS The expression levels and prognosis role of POLA1 and POLA2 in HCC were analyzed based on TCGA-LIHC database and recruited 24 HCC patients. Gene mutations were analyzed using "maftools" package. POLA2 and immune cells correlations were analyzed by TIMER. POLA2 co-expressed genes functional enrichment were evaluated using Metascape. The mRNA and protein level of POLA2 was detected in HCC cells and tissues. Cell migration, invasion, proliferation, cell cycle and HCC cell lines derived xenograft model were performed to investigate POLA2 biological function. RESULTS POLA2 was significantly high expressed in HCC than in normal liver tissue in both TCGA-LIHC and our collected HCC samples. In validation cohort, POLA2 significantly related to tumor differentiation, tumor size and Ki-67 (p < 0.05). In TCGA-LIHC cohort, overexpression of POLA2 predicted a low OS and associated with different clinical stages. Multivariate Cox regression showed overexpression of POLA2 effectively distinguished the prognosis at different T, N, M, stages and grades of HCC. POLA2 expression correlated with mutation burden, immune cells infiltration and immune-associated genes expression of HCC. Functional enrichment revealed that POLA2 co-expressed genes were linked to cellular activity, plasma membrane protein complex and leukocyte activity, immune response-regulated cell surface receptor signaling pathway, and immune response-regulated signaling pathway. Moreover, POLA2 was also positively co-expressed with some immune checkpoints (CD274, CTL-4, HAVCR2, PDCD1, PDCD1LG2, TIGIT, and LAG3) (p < 0.001). Gene knockdown revealed that POLA2 promoted proliferation, migration, invasion, and cell cycle of SMMC-7721 and HepG2. The HCC xenograft tumor model also demonstrated remarkably tumor size inhibition, tumor proliferation inhibtion and tumor necrosis promotion when POLA2 knockdown. CONCLUSIONS POLA2 influenced immune microenvironment and tumor progression of HCC indicated that it might be a potential molecular marker for prognostic evaluation or a therapeutic target for HCC.
Collapse
Affiliation(s)
- Long Liu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, 317000, Zhejiang, China
| | - Qi Wang
- Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Linjun Wu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, 317000, Zhejiang, China
- Taizhou Hospital Library, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Lele Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Yuxi Huang
- Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Haihua Yang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive, System Tumor of Zhejiang Province, Zhejiang, China
| | - Le Guo
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Zheping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, 317000, Zhejiang, China.
- Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, Zhejiang, China.
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province, Linhai, 317000, Zhejiang, China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive, System Tumor of Zhejiang Province, Zhejiang, China.
| |
Collapse
|
2
|
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 2022; 50:104. [PMID: 35713211 PMCID: PMC9304817 DOI: 10.3892/ijmm.2022.5160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the critical organelles involved in various cellular functions. Mitochondrial biogenesis is activated by multiple cellular mechanisms which require a synchronous regulation between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial DNA copy number (mtDNA-CN) is a proxy indicator for mitochondrial activity, and its alteration reflects mitochondrial biogenesis and function. Despite the precise mechanisms that modulate the amount and composition of mtDNA, which have not been fully elucidated, mtDNA-CN is known to influence numerous cellular pathways that are associated with cancer and as well as multiple other diseases. In addition, the utility of current technology in measuring mtDNA-CN contributes to its extensive assessment of diverse traits and tumorigenesis. The present review provides an overview of mtDNA-CN variations across human cancers and an extensive summary of the existing knowledge on the regulation and machinery of mtDNA-CN. The current information on the advanced methods used for mtDNA-CN assessment is also presented.
Collapse
Affiliation(s)
- Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
3
|
Chaudhary S, Ganguly S, Singh A, Palanichamy JK, Bakhshi R, Chopra A, Bakhshi S. Mitochondrial biogenesis gene POLG correlates with outcome in pediatric acute myeloid leukemia. Leuk Lymphoma 2022; 63:1005-1008. [PMID: 35075976 DOI: 10.1080/10428194.2021.2010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shilpi Chaudhary
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Shuvadeep Ganguly
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Radhika Bakhshi
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Anita Chopra
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
DNA Damage Response Genes in Osteosarcoma. JOURNAL OF ONCOLOGY 2021; 2021:9365953. [PMID: 35251167 PMCID: PMC8894034 DOI: 10.1155/2021/9365953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Improving the osteosarcoma (OS) patients' survival has long been a challenge, even though the disease's treatment is on the verge of progress. DNA damage response (DDR) has traditionally been associated with carcinogenesis, tumor growth, and genomic instability. No study has used DDR genes as a signature to identify the prognosis of OS. The goal of this work was to find an effective possible DDR gene biomarker for predicting OS prognosis, which may be useful in clinical diagnosis and therapy. METHODS To assess gene methylation, univariate and multivariate cox regression analyses were performed on data from OS patients. The data were retrieved from public databases, including the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and the Gene Expression Omnibus (GEO). RESULTS The DDR gene signature was chosen, which included seven genes (NHEJ1, RMI2, SWI5, ERCC2, CLK2, POLG, and MLH1). In the TARGET dataset, patients were categorized into two groups: high-risk and low-risk. Patients with a high-risk score revealed a shorter OS rate (hazard ratio (HR): 3.15, 95% confidence interval (CI): 1.38-4.34, P < 0.001) in comparison with the patients with a low-risk score in the TARGET as a training group. The validation of the prognostic signature accuracy was carried out in relapse and validation cohorts (TARGET, n = 75; GSE21257, n = 53). The signature was found to be an independent predictive factor for OS in multivariate cox regression analysis, and a nomogram model was developed to predict an individual's risk of OS. DDR gene signature involved in Fanconi anemia pathway, nonhomologous end-joining pathway, mismatch repair, and nucleotide excision repair pathway. CONCLUSIONS Our study suggests that the identified novel DDR genes could be a powerful prognostic tool for prognosis evaluation and a valuable tool in predicting the risk factors in OS patients.
Collapse
|
5
|
Buj R, Aird KM. Deoxyribonucleotide Triphosphate Metabolism in Cancer and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:177. [PMID: 29720963 PMCID: PMC5915462 DOI: 10.3389/fendo.2018.00177] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
The maintenance of a healthy deoxyribonucleotide triphosphate (dNTP) pool is critical for the proper replication and repair of both nuclear and mitochondrial DNA. Temporal, spatial, and ratio imbalances of the four dNTPs have been shown to have a mutagenic and cytotoxic effect. It is, therefore, essential for cell homeostasis to maintain the balance between the processes of dNTP biosynthesis and degradation. Multiple oncogenic signaling pathways, such as c-Myc, p53, and mTORC1 feed into dNTP metabolism, and there is a clear role for dNTP imbalances in cancer initiation and progression. Additionally, multiple chemotherapeutics target these pathways to inhibit nucleotide synthesis. Less is understood about the role for dNTP levels in metabolic disorders and syndromes and whether alterations in dNTP levels change cancer incidence in these patients. For instance, while deficiencies in some metabolic pathways known to play a role in nucleotide synthesis are pro-tumorigenic (e.g., p53 mutations), others confer an advantage against the onset of cancer (G6PD). More recent evidence indicates that there are changes in nucleotide metabolism in diabetes, obesity, and insulin resistance; however, whether these changes play a mechanistic role is unclear. In this review, we will address the complex network of metabolic pathways, whereby cells can fuel dNTP biosynthesis and catabolism in cancer, and we will discuss the potential role for this pathway in metabolic disease.
Collapse
Affiliation(s)
| | - Katherine M. Aird
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|