1
|
Raddaoui A, Mabrouk A, Chebbi Y, Frigui S, Salah Abbassi M, Achour W, Thabet L. Co-occurrence of blaNDM-1 and blaOXA-23 in carbapenemase-producing Acinetobacter baumannii belonging to high-risk lineages isolated from burn patients in Tunisia. J Appl Microbiol 2024; 135:lxae039. [PMID: 38346864 DOI: 10.1093/jambio/lxae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
AIMS Carbapenem-resistant Acinetobacter baumannii (CR-Ab) is an important cause of infections in burn patients. This study aimed to characterize the antimicrobial susceptibility pattern of CR-Ab isolated from burns in Burn Intensive Care Unit (BICU) of the Trauma and Burn Centre of Ben Arous, to determine the prevalence of β-lactamase-encoding genes and to search eventual genetic relatedness of CR-Ab strains. METHODS AND RESULTS From 15 December 2016 to 2 April 2017, all nonduplicated CR-Ab isolated in burn patients in the BICU were screened by simplex Polymerase Chain Reaction (PCR) for the class A, B, C, and D β-lactamase genes. Sequencing was performed for NDM gene only. Genetic relatedness was determined by using pulsed field gel electrophoresis (PFGE) and by multilocus sequence typing. During the study period, 34 strains of CR-Ab were isolated in burns, mainly in blood culture (n = 14) and central vascular catheter (n = 10). CR-Ab strains were susceptible to colistin but resistant to amikacin (91%), ciprofloxacin (100%), rifampicin (97%), and trimethoprim-sulfamethoxazole (100%). All strains harbored blaOXA-51-like and blaOXA-23 genes, only or associated to blaGES (n = 26; 76%), blaADC (n = 20; 59%), blaPER-1 (n = 6; 18%) or/and blaNDM-1 (n = 3; 9%). PFGE identified 16 different clusters and revealed that most strains belonged to one major cluster A (n = 15; 44.1%). Among NDM-1 isolates, two were clonally related in PFGE and belonged to two single locus variant sequence type ST-6 and ST-85. CONCLUSIONS This is the first description of clonally related NDM-1 and OXA-23-producing A. baumannii strains in the largest Tunisian BICU associated with two single locus variant sequence types ST6 and ST85.
Collapse
Affiliation(s)
- Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Aymen Mabrouk
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Yosra Chebbi
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Siwar Frigui
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Mohamed Salah Abbassi
- Faculty of Medicine of Tunis, Laboratory of Antibiotic Resistance LR99ES09, University of Tunis El Manar, 1006 Tunis, Tunisia
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Wafa Achour
- Laboratory Ward, National Bone Marrow Transplant Center, 1006 Tunis, Tunisia
- Faculty of Medicine of Tunis, LR18ES39, University of Tunis El Manar, 1006 Tunis, Tunisia
| | - Lamia Thabet
- Laboratory Ward, Traumatology and Great Burned Center, 2074 Ben Arous, Tunisia
| |
Collapse
|
2
|
Khokhlova OE, Vladimirov IV, Kozlov RS, Lazareva IV, Edelstein MV, Larionova IA, Molodtsova AV, Avdeeva VA, Fursova NK, Sidorenko SV. Molecular-Genetic Mechanisms of Resistance to Antibiotic of the Pathogens in Patients with Thermal Burns and Infection. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
3
|
Kumari N, Kumar M, Katiyar A, Kumar A, Priya P, Kumar B, Biswas NR, Kaur P. Genome-wide identification of carbapenem-resistant Gram-negative bacterial (CR-GNB) isolates retrieved from hospitalized patients in Bihar, India. Sci Rep 2022; 12:8477. [PMID: 35590022 PMCID: PMC9120164 DOI: 10.1038/s41598-022-12471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Carbapenemase-producing clinical isolates are becoming more common over the world, posing a severe public health danger, particularly in developing nations like India. Carbapenem-resistant Gram-negative bacterial (CR-GNB) infection has become a fast-expanding global threat with limited antibiotic choice and significant mortality. This study aimed to highlight the carbapenem-resistance among clinical isolates of hospital admitted patients in Bihar, India. A cross-sectional study was conducted with 101 clinical isolates of Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. All GNB isolates were tested for their antimicrobial susceptibility using Kirby-Bauer disc diffusion method. Double disc synergy test / modified Hodge test (DDST/MHT) were used to detect carbapenemase production by these isolates. Subsequently, these isolates were evaluated for carbapenem-resistance genes using whole-genome sequencing method. The overall percentage of carbapenem-resistance among GNB was (17/101) 16.8%. The genomic analysis of antimicrobial-resistance (AMR) demonstrates a significantly high prevalence of blaCTX-M followed by blaSHV, blaTEM, blaOXA, and blaNDM β-lactam or carbapenem resistance genes among clinical isolates of GNB. Co-occurrence of blaNDM with other beta-lactamase-encoding genes was found in 70.6% of carbapenemase-producing isolates. Our study highlights the mechanism of carbapenem-resistance to curb the overwhelming threat posed by the emergence of drug-resistance in India.
Collapse
Affiliation(s)
- Namrata Kumari
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, 800014, Bihar, India.
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Abhay Kumar
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, 800014, Bihar, India
| | - Pallavi Priya
- Department of Microbiology, Mahavir Cancer Sansthan, Patna, 801505, Bihar, India
| | - Bablu Kumar
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, 800014, Bihar, India
| | - Nihar Ranjan Biswas
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, 800014, Bihar, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
4
|
Mabrouk A, Chebbi Y, Raddaoui A, Krir A, Messadi AA, Achour W, Thabet L. Clonal spread of PER-1 and OXA-23 producing extensively drug resistant Acinetobacter baumannii during an outbreak in a burn intensive care unit in Tunisia. Acta Microbiol Immunol Hung 2020; 67:222-227. [PMID: 33216011 DOI: 10.1556/030.2020.01208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022]
Abstract
Extensively drug resistant Acinetobacter baumannii (XDR-Ab), has emerged as an important pathogen in several outbreaks. The aim of our study was to investigate the eventual genetic relatedness of XDR-Ab strains recovered from burn patients and environment sites in the largest Tunisian Burn Intensive Care Unit (BICU) and to characterize β-lactamase encoding genes in these strains. Between March 04th, 2019 and April 22nd, 2019 an outbreak of XDR-Ab was suspected. Environmental screening was done. All isolates were screened by simplex PCR for β-lactamase genes. Genetic relatedness was determined by pulsed field gel electrophoresis (PFGE) of ApaI-digested total DNA. During the study period, 21 strains of A. baumannii were isolated in burn patients, mainly in blood culture (n = 7) and central vascular catheter (n = 6). All strains were susceptible to colistin but resistant to imipenem (n = 23), ciprofloxacin (n = 23), amikacin (n = 22), tigecyclin (n = 5) and rifampicin (n = 4). The blaOXA-51-like, blaOXA23, and blaADC genes were present in all strains. These resistance determinants were associated with blaPER-1 in 10 strains. The ISAba1 was inserted upstream of blaOXA-23 in all isolates. PFGE revealed two major clusters A (n = 11) and B (n = 5). This is the first description in Tunisia of clonally related PER-1 producing XDR-Ab in burn patients with probable environmental origin.
Collapse
Affiliation(s)
- Aymen Mabrouk
- 1Laboratory Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia
- 2Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, 1006, Tunis, Tunisia
| | - Yosra Chebbi
- 1Laboratory Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia
- 2Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, 1006, Tunis, Tunisia
| | - Anis Raddaoui
- 1Laboratory Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia
- 2Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, 1006, Tunis, Tunisia
| | - Asma Krir
- 4Burns Intensive Care Unit, Traumatology and Great Burned Center, 2074, Ben Arous, Tunisia
| | - Amen Allah Messadi
- 4Burns Intensive Care Unit, Traumatology and Great Burned Center, 2074, Ben Arous, Tunisia
| | - Wafa Achour
- 1Laboratory Ward, National Bone Marrow Transplant Center, 1006, Tunis, Tunisia
- 2Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, 1006, Tunis, Tunisia
| | - Lamia Thabet
- 2Tunis El Manar University, Faculty of Medicine of Tunis, LR18ES39, 1006, Tunis, Tunisia
- 3Laboratory Ward, Traumatology and Great Burned Center, 2074, Ben Arous, Tunisia
| |
Collapse
|
5
|
Alhogail S, Suaifan GA, Bikker FJ, Kaman WE, Weber K, Cialla-May D, Popp J, Zourob MM. Rapid Colorimetric Detection of Pseudomonas aeruginosa in Clinical Isolates Using a Magnetic Nanoparticle Biosensor. ACS OMEGA 2019; 4:21684-21688. [PMID: 31891046 PMCID: PMC6933554 DOI: 10.1021/acsomega.9b02080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/08/2019] [Indexed: 05/21/2023]
Abstract
A rapid, sensitive, and specific colorimetric biosensor based on the use of magnetic nanoparticles (MNPs) was designed for the detection of Pseudomonas aeruginosa in clinical samples. The biosensing platform was based on the measurement of P. aeruginosa proteolytic activity using a specific protease substrate. At the N-terminus, this substrate was covalently bound to MNPs and was linked to a gold sensor surface via cystine at the C-terminus of the substrates. The golden sensor appears black to naked eyes because of the coverage of the MNPs. However, upon proteolysis, the cleaved peptide-MNP moieties will be attracted by an external magnet, revealing the golden color of the sensor surface, which can be observed by the naked eye. In vitro, the biosensor was able to detect specifically and quantitatively the presence of P. aeruginosa with a detection limit of 102 cfu/mL in less than 1 min. The colorimetric biosensor was used to test its ability to detect in situ P. aeruginosa in clinical isolates from patients. This biochip is anticipated to be useful as a rapid point-of-care device for the diagnosis of P. aeruginosa-related infections.
Collapse
Affiliation(s)
- Sahar Alhogail
- Department
of Clinical Laboratory Science, King Saud
University, Ad Diriyah District, 11433 Riyadh, Kingdom of Saudi
Arabia
- Department
of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al
Takhassusi Road, 11533 Riyadh, Saudi Arabia
| | - Ghadeer A.R.Y. Suaifan
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, 11942 Amman, Jordan
| | - Floris J. Bikker
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Wendy E. Kaman
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
- Department
of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Wytemaweg 80, 3015 CE Rotterdam, The Netherlands
| | - Karina Weber
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics
Research Campus Jena, Center for Applied
Research, Philosophenweg
7, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Dana Cialla-May
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics
Research Campus Jena, Center for Applied
Research, Philosophenweg
7, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jürgen Popp
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics
Research Campus Jena, Center for Applied
Research, Philosophenweg
7, 07743 Jena, Germany
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Mohammed M. Zourob
- Department
of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al
Takhassusi Road, 11533 Riyadh, Saudi Arabia
- King
Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
- E-mail:
| |
Collapse
|
6
|
Laishram S, Pragasam AK, Bakthavatchalam YD, Veeraraghavan B. An update on technical, interpretative and clinical relevance of antimicrobial synergy testing methodologies. Indian J Med Microbiol 2018; 35:445-468. [PMID: 29405135 DOI: 10.4103/ijmm.ijmm_17_189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Testing for antimicrobial interactions has gained popularity in the last decade due to the increasing prevalence of drug-resistant organisms and limited options for the treatment of these infections. In vitro combination testing provides information, on which two or more antimicrobials can be combined for a good clinical outcome. Amongst the various in vitro methods of drug interactions, time-kill assay (TKA), checkerboard (CB) assay and E-test-based methods are most commonly used. Comparative performance of these methods reveals the TKA as the most promising method to detect synergistic combinations followed by CB assay and E-test. Various combinations of antimicrobials have been tested to demonstrate synergistic activity. Promising results were obtained for the combinations of meropenem plus colistin and rifampicin plus colistin against Acinetobacter baumannii, colistin plus carbapenem and carbapenem plus fluoroquinolones against Pseudomonas aeruginosa and colistin/polymyxin B plus rifampicin/meropenem against Klebsiella pneumoniae. Antagonism was detected in only few instances. The presence of synergy or antagonism with a combination seems to correlate with minimum inhibitory concentration of the agent and molecular mechanism involved in the resistance. Further studies need to be conducted to assess the utility of in vitro testing to predict clinical outcome and direct therapy for drug-resistant organisms.
Collapse
Affiliation(s)
- Shakti Laishram
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| |
Collapse
|
7
|
Turan NB, Engin GÖ. Quorum Quenching. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Pirii LE, Friedrich AW, Rossen JWA, Vogels W, Beerthuizen GIJM, Nieuwenhuis MK, Kooistra-Smid AMD, Bathoorn E. Extensive colonization with carbapenemase-producing microorganisms in Romanian burn patients: infectious consequences from the Colectiv fire disaster. Eur J Clin Microbiol Infect Dis 2018; 37:175-183. [PMID: 29063446 PMCID: PMC5748401 DOI: 10.1007/s10096-017-3118-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Health care of severe burn patients is highly specialized and may require international patient transfer. Burn patients have an increased risk of developing infections. Patients that have been hospitalized in countries where carbapenemase-producing microorganisms (CPMO) are endemic may develop infections that are difficult to treat. In addition, there is a risk on outbreaks with CPMOs in burn centers. This study underlines that burn patients may extensively be colonized with CPMOs, and it provides best practice recommendations regarding clinical microbiology and infection control. We evaluated CPMO-carriage and wound colonization in a burn patient initially treated in Romania, and transported to the Netherlands. The sequence types and acquired beta-lactamase genes of highly-resistant microorganisms were derived from next generation sequencing data. Next, we searched literature for reports on CPMOs in burn patients. Five different carbapenemase-producing isolates were cultured: two unrelated OXA-48-producing Klebsiella pneumoniae isolates, OXA-23-producing Acinetobacter baumanii, OXA-48-producing Enterobacter cloacae, and NDM-1-producing Providencia stuartii. Also, multi-drug resistant Pseudomonas aeruginosa isolates were detected. Among the sampling sites, there was high variety in CPMOs. We found 46 reports on CPMOs in burn patients. We listed the epidemiology of CPMOs by country of initial treatment, and summarized recommendations for care of these patients based on these reports and our study.
Collapse
Affiliation(s)
- L E Pirii
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - A W Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W Vogels
- Department of Medical Microbiology, Certe, Groningen, The Netherlands
- Department of Medical Microbiology, Martini Hospital, Groningen, The Netherlands
| | | | - M K Nieuwenhuis
- Association of Dutch Burn Centers, Burn Centre, Martini Hospital Groningen, Groningen, The Netherlands
| | - A M D Kooistra-Smid
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Microbiology, Certe, Groningen, The Netherlands
| | - E Bathoorn
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Hosseininassab Nodoushan SA, Yadegari S, Moghim S, Isfahani BN, Fazeli H, Poursina F, Nasirmoghadas P, Safaei HG. Distribution of the Strains of Multidrug-resistant, Extensively Drug-resistant, and Pandrug-resistant Pseudomonas aeruginosa Isolates from Burn Patients. Adv Biomed Res 2017; 6:74. [PMID: 28706882 PMCID: PMC5501067 DOI: 10.4103/abr.abr_239_16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Pseudomonas aeruginosa is an opportunistic and Gram-negative pathogen that is used as the most important factor in burn wound infections, and due to the rapid acquisition of multidrug resistance (MDR), it causes high mortality rates in these sectors. Thus, diagnosis and assessment of antibiotic resistance patterns are very important in these patients. The aim of this study was to evaluate antibiotic resistance pattern and determining P. aeruginosa MDR. Materials and Methods: In this study, phenotypic, biochemical, and polymerase chain reaction tests were used to identify P. aeruginosa from 120 wound burn samples that 96 samples were detected to P. aeruginosa species. In the next step, according to the Clinical and Laboratory Standard Institute standard guidelines, antibiogram test was performed by disk diffusion method for amikacin, ciprofloxacin, norfloxacin, gentamicin, cefepime, aztreonam, meropenem, colistin, ceftazidime, and piperacillin-tazobactam antibiotics. Antibiotic data were analyzed by WHONET software; finally, the rate of antibiotic resistance and MDR strains was determined. Results: The highest antibiotic resistance belonged to amikacin (94.8%) and norfloxacin (90.6%); in contrast, colistin (8.3%) had the lowest and the MDR strains were MDR (95.8%) and extensively drug resistance (XDR) (87.5%). Conclusion: In this study, there was MDR with an alarming rate including MDR (95.8%), XDR (87.5%), and pan-drug resistance (0%). As a result, given antibiotics to patients should be controlled by the antibiogram results to avoid increasing MDR strains.
Collapse
Affiliation(s)
| | - Sima Yadegari
- Department of Infectious Disease Research, Imammosa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Imammosa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Nasr Isfahani
- Department of Microbiology, School of Medicine, Imammosa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Imammosa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farkhondeh Poursina
- Department of Microbiology, School of Medicine, Imammosa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pourya Nasirmoghadas
- Department of Microbiology, School of Medicine, Imammosa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hajieh Ghasemian Safaei
- Department of Microbiology, School of Medicine, Imammosa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Identification of Extended-Spectrum β-Lactamase Genes and AmpC-β-Lactamase in Clinical Isolates of Escherichia coli Recovered from Patients with Urinary Tract Infections in Kerman, Iran. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2016. [DOI: 10.5812/pedinfect.37968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Mathlouthi N, Al-Bayssari C, Bakour S, Rolain JM, Chouchani C. RETRACTED ARTICLE: Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit Rev Microbiol 2016; 43:43-61. [DOI: 10.3109/1040841x.2016.1160867] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Najla Mathlouthi
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| | - Charbel Al-Bayssari
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Jean Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Chedly Chouchani
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| |
Collapse
|
12
|
How to stratify patients at risk for resistant bugs in skin and soft tissue infections? Curr Opin Infect Dis 2016; 29:116-23. [DOI: 10.1097/qco.0000000000000244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Dong D, Zou D, Liu H, Yang Z, Huang S, Liu N, He X, Liu W, Huang L. Rapid detection of Pseudomonas aeruginosa targeting the toxA gene in intensive care unit patients from Beijing, China. Front Microbiol 2015; 6:1100. [PMID: 26500639 PMCID: PMC4594016 DOI: 10.3389/fmicb.2015.01100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/23/2015] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen in hospital-acquired infections and exhibits increasing antibiotic resistance. A rapid and sensitive molecular method for its detection in clinical samples is needed to guide therapeutic treatment and to control P. aeruginosa outbreaks. In this study, we established a polymerase spiral reaction (PSR) method for rapid detection of P. aeruginosa by targeting the toxA gene, which regulates exotoxin A synthesis. Real-time turbidity monitoring and a chromogenic visualization using hydroxynaphthol blue were used to assess the reaction. All 17 non- P. aeruginosa strains tested negative, indicating the high specificity of the PSR primers. The detection limit was 2.3 pg/μl within 60 min at isothermal temperature (65°C), 10-fold more sensitive than conventional PCR. Then, the PSR assay was applied to a clinical surveillance of P. aeruginosa in three top hospitals in Beijing, China. Of the 130 sputum samples collected from ICU patients with suspected multi-resistant infections, 37 P. aeruginosa isolates were identified from the positive samples. All clinical strains belonged to 10 different P. aeruginosa multilocus sequence typing groups and exhibited high resistance to carbapenems, cephalosporins, and aminoglycosides. Interestingly, of the 33 imipenem-resistant isolates, 30 (90.9%) had lost the outer membrane porin oprD gene. Moreover, isolate SY-95, containing multiple antibiotic resistance genes, possessed the ability to hydrolyze all antibiotics used in clinic and was susceptible only to polymyxin B. Our study showed the high level of antibiotic resistance and co-occurrence of resistance genes in the clinical strains, indicating a rapid and continuing evolution of P. aeruginosa. In conclusion, we developed a P. aeruginosa PSR assay, which could be a useful tool for clinical screening, especially in case of poor resources, or for point-of-care testing.
Collapse
Affiliation(s)
- Derong Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Dayang Zou
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Hui Liu
- Department of Digestive System, The Second Affiliated Hospital of Dalian Medical University Dalian, China
| | - Zhan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Simo Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Ningwei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xiaoming He
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Wei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
14
|
Supp DM, Neely AN. Cutaneous antimicrobial gene therapy: engineering human skin replacements to combat wound infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.3.1.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Pajand O, Rezaee MA, Nahaei MR, Mahdian R, Aghazadeh M, Soroush MH, Tabrizi MS, Hojabri Z. Study of the carbapenem resistance mechanisms in clinical isolates of Acinetobacter baumannii: Comparison of burn and non-burn strains. Burns 2013; 39:1414-9. [DOI: 10.1016/j.burns.2013.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/19/2013] [Accepted: 03/29/2013] [Indexed: 11/28/2022]
|
16
|
Yousefi S, Nahaei M, Farajnia S, Akhi M, Ghotaslou R, Lotfipour F, Soroush M. Metallo-β-Lactamase-ProducingPseudomonas aeruginosain Two Iranian Teaching Hospitals, Their Antimicrobial Susceptibility and Serotypes. J Chemother 2013; 23:114-6. [DOI: 10.1179/joc.2011.23.2.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Rouis Z, Abid N, Koudja S, Yangui T, Elaissi A, Cioni PL, Flamini G, Aouni M. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:24. [PMID: 23360506 PMCID: PMC3637322 DOI: 10.1186/1472-6882-13-24] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 01/23/2013] [Indexed: 11/21/2022]
Abstract
Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their purified fractions and their pure secondary metabolites.
Collapse
|
18
|
Garcia MC, Finola MS, Marioli JM. Bioassay Directed Identification of Royal Jelly’s Active Compounds against the Growth of Bacteria Capable of Infecting Cutaneous Wounds. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.32022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Kumar SH, De AS, Baveja SM, Gore MA. Prevalence and risk factors of Metallo β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in burns and surgical wards in a tertiary care hospital. J Lab Physicians 2012; 4:39-42. [PMID: 22923921 PMCID: PMC3425263 DOI: 10.4103/0974-2727.98670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Introduction: The production of Metallo-β-lactamases (MBLs) is one of the resistance mechanisms of Pseudomonas aeruginosa and Acinetobacter species. There is not much Indian data on the prevalence of MBLs in burns and surgical wards. Materials and Methods: A total of 145 non-duplicate isolates of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter species, isolated from pus/wound swabs and endotracheal secretions from burns and surgical wards, were tested for MBL production by modified ethylene diamine tetra acetic acid (EDTA) disc synergy and double disc synergy tests. Results: Prevalence of MBLs was 26.9% by both the above tests. All MBL-positive isolates were multidrug resistant. Only 6.06% (2/33) P.aeruginosa and 16.67% (1/06) Acinetobacter species were susceptible to piperacillin-tazobactam and netilmycin, respectively. These patients had multiple risk factors like >8 days hospital stay, catheterization, IV lines, previous antibiotic use, mechanical ventilation, etc. Graft application and surgical intervention were significant risk factors in MBL-positive patients. Overall mortality in MBL-positive patients was 34.21%. Conclusion: Emergence of MBL-producing Pseudomonas aeruginosa and Acinetobacter species in this hospital is alarming, which reflect excessive use of carbapenems and at the same time, pose a therapeutic challenge to clinicians as well as to microbiologists. Therefore, a strict antibiotic policy and implementation of proper infection control practices will go a long way to prevent further spread of MBLs. Detection of MBLs should also become mandatory in all hospitals.
Collapse
Affiliation(s)
- Simit H Kumar
- Department of Microbiology, L.T.M. Medical College, Sion, Mumbai - 400 022, Maharashtra, India
| | | | | | | |
Collapse
|
20
|
Tan HT, Rahman RA, Gan SH, Halim AS, Hassan SA, Sulaiman SA, BS KK. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. Altern Ther Health Med 2009; 9:34. [PMID: 19754926 PMCID: PMC2753561 DOI: 10.1186/1472-6882-9-34] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/15/2009] [Indexed: 11/28/2022]
Abstract
Background Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey. Methods Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v)] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC) also was determined by culturing on blood agar plates. Results By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%). Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75%) for both types of honey was against Stenotrophomonas maltophilia. Tualang honey had a lower MIC (11.25%) against Acinetobacter baumannii compared to manuka honey (12.5%). Conclusion Tualang honey exhibited variable activities against different microorganisms, but they were within the same range as those for manuka honey. This result suggests that tualang honey could potentially be used as an alternative therapeutic agent against certain microorganisms, particularly A. baumannii and S. maltophilia.
Collapse
|
21
|
Basualdo C, Sgroy V, Finola MS, Marioli JM. Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Vet Microbiol 2007; 124:375-81. [PMID: 17540520 DOI: 10.1016/j.vetmic.2007.04.039] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 04/18/2007] [Accepted: 04/25/2007] [Indexed: 01/22/2023]
Abstract
The antibacterial activity of honey samples provided by apiarists and honey packers was tested against microorganisms usually isolated from skin wounds. The antibacterial activity was tested using the well-agar diffusion assay. The honey samples were tested without dilution, and at 75, 50, 30, and 10% (w/v) dilution. Most of the undiluted honey samples inhibited the growth of Staphylococcus aureus and Staphylococcus epidermidis. Some honey samples provided by apiarists also inhibited the growth of S. aureus even at 50% dilution. Undiluted honey samples also inhibited the growth of Staphylococcus uberis, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae, although to a lesser extent. No inhibition of Micrococcus luteus and Enterococcus faecalis growth was detected. The diameters of the inhibition zones generated by honey samples provided by apiarists were larger than those generated by honey samples provided by honey packers. This observation may be explained by considering the provenance of the honey samples.
Collapse
Affiliation(s)
- Claudia Basualdo
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, ruta 36, km 601, X5804BYA Río Cuarto, Argentina
| | | | | | | |
Collapse
|
22
|
Ait El Kadi M, Aghrouch M, Seffar M, El harti J, Bouklouze A, Cherrah Y, Souly K, Zouhdi M. Prévalence des souches d'Acinetobacter baumannii et de Pseudomonas aeruginosa résistantes à l'imipénème par production de métallo-β-lactamases. Med Mal Infect 2006; 36:386-9. [PMID: 16842953 DOI: 10.1016/j.medmal.2006.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 05/15/2006] [Indexed: 11/23/2022]
Abstract
UNLABELLED Metallo-beta-lactamases (MBL) are enzymes produced by Gram-negative bacilli such as Pseudomonas aeruginosa and Acinetobacter baumannii. These enzymes make these isolates resistant to imipenem. AIM The aim of this study was to determine the prevalence of this resistance mechanism in Pseudomonas aeruginosa and Acinetobacter baumannii strains identified in the bacteriology laboratory of the Rabat Ibn Sina teaching hospital, Morocco. MATERIALS AND METHOD Screening for MBL was systematic in all resistant strains and/or strains with decreased sensitivity to imipenem, according to Dongeun Yong et al.'s method, using a sterilized solution of EDTA 0.5 M pH 8. RESULTS Eighty-five bacterial strains (48 P. aeruginosa and 37 A. baumannii) were identified 23% (11) and 57% (21) of which were respectively resistant to the imipenem. The prevalence of MbetaL producing strains was 27% for P. aeruginosa and 38% for A. baumannii. CONCLUSION These results show that the frequency of these strains is increases in our hospital and that their emergence represents a serious therapeutic and epidemiological problem. This means that we need to implement the supervision of hospital microbial environment and strictly apply hygiene measures.
Collapse
Affiliation(s)
- M Ait El Kadi
- Service de microbiologie, hôpital des spécialités, CHU Ibn-Sina, Rabat, Maroc.
| | | | | | | | | | | | | | | |
Collapse
|