1
|
Caffin F, Boccara D, Piérard C. The Use of Hydrogel Dressings in Sulfur Mustard-Induced Skin and Ocular Wound Management. Biomedicines 2023; 11:1626. [PMID: 37371720 DOI: 10.3390/biomedicines11061626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Over one century after its first military use on the battlefield, sulfur mustard (SM) remains a threatening agent. Due to the absence of an antidote and specific treatment, the management of SM-induced lesions, particularly on the skin and eyes, still represents a challenge. Current therapeutic management is mainly limited to symptomatic and supportive care, pain relief, and prevention of infectious complications. New strategies are needed to accelerate healing and optimize the repair of the function and appearance of damaged tissues. Hydrogels have been shown to be suitable for healing severe burn wounds. Because the same gravity of lesions is observed in SM victims, hydrogels could be relevant dressings to improve wound healing of SM-induced skin and ocular injuries. In this article, we review how hydrogel dressings may be beneficial for improving the wound healing of SM-induced injuries, with special emphasis placed on their suitability as drug delivery devices on SM-induced skin and ocular lesions.
Collapse
Affiliation(s)
- Fanny Caffin
- Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - David Boccara
- Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Christophe Piérard
- Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
2
|
Goswami DG, Kumar D, Tewari-Singh N, Orlicky DJ, Jain AK, Kant R, Rancourt RC, Dhar D, Inturi S, Agarwal C, White CW, Agarwal R. Topical nitrogen mustard exposure causes systemic toxic effects in mice. ACTA ACUST UNITED AC 2014; 67:161-70. [PMID: 25481215 DOI: 10.1016/j.etp.2014.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40-80% mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures.
Collapse
Affiliation(s)
- Dinesh G Goswami
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anil K Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raymond C Rancourt
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepanshi Dhar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Swetha Inturi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Lomash V, Pant SC. A novel decontaminant and wound healant formulation of N,N'-dichloro-bis[2,4,6-trichlorophenyl]urea against sulfur mustard-induced skin injury. Wound Repair Regen 2014; 22:85-95. [PMID: 24393156 DOI: 10.1111/wrr.12126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/28/2013] [Indexed: 11/27/2022]
Abstract
Sulfur mustard (SM)-induced dermatotoxicity can be prevented by an immediate use of decontamination agents. However, practically due to the time lapse between decontamination and exposure, there is always a possibility of wound formation. In view of this, a hydrophilic decontamination formulation of CC-2 (DRDE/WH-03) was fortified with Aloe vera gel and betaine (DRDE/WH-01) for improving its wound healing ability. Swiss albino mice were exposed to SM percutaneously (5 mg/kg) once, and after 24 hours, DRDE/WH-01, DRDE/WH-03, framycetin, and aloe gel were applied topically, daily for 7 days. Skin sections were subjected to histopathology, histomorphologic grading, tissue leukocytosis, and immunohistochemistry of inflammatory-reparative biomarkers on 3 and 7 days, respectively. DRDE/WH-01, framycetin, and aloe gel showed better reepithelialization, angiogenesis, and fibroplasia compared with DRDE/WH-03 and SM control. On the basis of histomorphologic scale, DRDE/WH-01, framycetin, and aloe gel were found to be equally efficacious. Up-regulation of interleukin-6 and infiltrating leukocytes, endothelial nitric oxide synthase and angiogenesis, fibroblast growth factor, and transforming growth factor-alpha with fibroplasia and reepithelialization were well correlated at various stages of the healing process. DRDE/WH-01 was equally effective as framycetin and has shown improved wound healing efficacy compared with DRDE/WH-03. Thus, DRDE/WH-01 can be recommended as a universal decontaminant and wound healant against vesicant-induced skin injury.
Collapse
Affiliation(s)
- Vinay Lomash
- Department of Pharmacology and Toxicology, Defence R&D Establishment, Gwalior, India
| | | |
Collapse
|
4
|
Mouret S, Wartelle J, Batal M, Emorine S, Bertoni M, Poyot T, Cléry-Barraud C, Bakdouri NE, Peinnequin A, Douki T, Boudry I. Time course of skin features and inflammatory biomarkers after liquid sulfur mustard exposure in SKH-1 hairless mice. Toxicol Lett 2014; 232:68-78. [PMID: 25275893 DOI: 10.1016/j.toxlet.2014.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/16/2022]
Abstract
Sulfur mustard (SM) is a strong bifunctional alkylating agent that produces severe tissue injuries characterized by erythema, edema, subepidermal blisters and a delayed inflammatory response after cutaneous exposure. However, despite its long history, SM remains a threat because of the lack of effective medical countermeasures as the molecular mechanisms of these events remain unclear. This limited number of therapeutic options results in part of an absence of appropriate animal models. We propose here to use SKH-1 hairless mouse as the appropriate model for the design of therapeutic strategies against SM-induced skin toxicity. In the present study particular emphasis was placed on histopathological changes associated with inflammatory responses after topical exposure of dorsal skin to three different doses of SM (0.6, 6 and 60mg/kg) corresponding to a superficial, a second-degree and a third-degree burn. Firstly, clinical evaluation of SM-induced skin lesions using non invasive bioengineering methods showed that erythema and impairment of skin barrier increased in a dose-dependent manner. Histological evaluation of skin sections exposed to SM revealed that the time to onset and the severity of symptoms including disorganization of epidermal basal cells, number of pyknotic nuclei, activation of mast cells and neutrophils dermal invasion were dose-dependent. These histopathological changes were associated with a dose- and time-dependent increase in expression of specific mRNA for inflammatory mediators such as interleukins (IL1β and IL6), tumor necrosis factor (TNF)-α, cycloxygenase-2 (COX-2), macrophage inflammatory proteins (MIP-1α, MIP-2 and MIP-1αR) and keratinocyte chemoattractant (KC also called CXCL1) as well as adhesion molecules (L-selectin and vascular cell adhesion molecule (VCAM)) and growth factor (granulocyte colony-stimulating factor (Csf3)). A dose-dependent increase was also noted after SM exposure for mRNA of matrix metalloproteinases (MMP9) and laminin-γ2 which are associated with SM-induced blisters formation. Taken together, our results show that SM-induced skin histopathological changes related to inflammation is similar in SKH-1 hairless mice and humans. SKH-1 mouse is thus a reliable animal model for investigating the SM-induced skin toxicity and to develop efficient treatment against SM-induced inflammatory skin lesions.
Collapse
Affiliation(s)
- Stéphane Mouret
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France.
| | - Julien Wartelle
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Mohamed Batal
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France; UJF & CNRS, CEA, INAC, SCIB, LCIB (UMR_E 3CEA-UJF), Laboratoire Lésions des Acides Nucléiques, 17 Rue des Martyrs, Grenoble Cedex 9 F-38054, France
| | - Sandy Emorine
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Marine Bertoni
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Thomas Poyot
- Pôle de Génomique, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Cécile Cléry-Barraud
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Nacera El Bakdouri
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - André Peinnequin
- Pôle de Génomique, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Thierry Douki
- UJF & CNRS, CEA, INAC, SCIB, LCIB (UMR_E 3CEA-UJF), Laboratoire Lésions des Acides Nucléiques, 17 Rue des Martyrs, Grenoble Cedex 9 F-38054, France
| | - Isabelle Boudry
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| |
Collapse
|
5
|
Tewari-Singh N, Jain AK, Orlicky DJ, White CW, Agarwal R. Cutaneous injury-related structural changes and their progression following topical nitrogen mustard exposure in hairless and haired mice. PLoS One 2014; 9:e85402. [PMID: 24416404 PMCID: PMC3885697 DOI: 10.1371/journal.pone.0085402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/27/2013] [Indexed: 11/24/2022] Open
Abstract
To identify effective therapies against sulfur mustard (SM)-induced skin injuries, various animals have been used to assess the cutaneous pathology and related histopathological changes of SM injuries. However, these efforts to establish relevant skin injury endpoints for efficacy studies have been limited mainly due to the restricted assess of SM. Therefore, we employed the SM analog nitrogen mustard (NM), a primary vesicating and bifunctional alkylating agent, to establish relevant endpoints for efficient efficacy studies. Our published studies show that NM (3.2 mg) exposure for 12–120 h in both the hairless SKH-1 and haired C57BL/6 mice caused clinical sequelae of toxicity similar to SM exposure in humans. The NM-induced cutaneous pathology-related structural changes were further analyzed in this study and quantified morphometrically (as percent length or area of epidermis or dermis) of skin sections in mice showing these lesions. H&E stained skin sections of both hairless and haired mice showed that NM (12–120 h) exposure caused epidermal histopathological effects such as increased epidermal thickness, epidermal-dermal separation, necrotic/dead epidermis, epidermal denuding, scab formation, parakeratosis (24–120 h), hyperkeratosis (12–120 h), and acanthosis with hyperplasia (72–120 h). Similar NM exposure in both mice caused dermal changes including necrosis, edema, increase in inflammatory cells, and red blood cell extravasation. These NM-induced cutaneous histopathological features are comparable to the reported lesions from SM exposure in humans and animal models. This study advocates the usefulness of these histopathological parameters observed due to NM exposure in screening and optimization of rescue therapies against NM and SM skin injuries.
Collapse
Affiliation(s)
- Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Anil K. Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - David J. Orlicky
- Department of Pathology, School of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Carl W. White
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
6
|
Misik J, Jost P, Pavlikova R, Vodakova E, Cabal J, Kuca K. A comparison of decontamination effects of commercially available detergents in rats pre-exposed to topical sulphur mustard. Cutan Ocul Toxicol 2012; 32:135-9. [DOI: 10.3109/15569527.2012.730087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Lomash V, Jadhav SE, Vijayaraghavan R, Pant SC. Time course pathogenesis of sulphur mustard-induced skin lesions in mouse model. Int Wound J 2012; 10:441-54. [PMID: 22672652 DOI: 10.1111/j.1742-481x.2012.01003.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blistering in humans and animals. In this study, we have presented closer views on pathogenesis of SM-induced skin injury in a mouse model. SM diluted in acetone was applied once dermally at a dose of 5 or 10 mg/kg to Swiss albino mice. Skin was dissected out at 0, 1, 3, 6, 12, 24, 48, 72 and 168 hours, post-SM exposure for studying histopathological changes and immunohistochemistry of inflammatory-reparative biomarkers, namely, transforming growth factor alpha (TGF-α), fibroblast growth factor (FGF), endothelial nitric oxide synthase (eNOS) and interlukin 6 (IL-6). Histopathological changes were similar to other mammalian species and basal cell damage resembled the histopathological signs observed with vesication in human skin. Inflammatory cell recruitment at the site of injury was supported by differential expressions of IL-6 at various stages. Time-dependent expressions of eNOS played pivotal roles in all the events of wound healing of SM-induced skin lesions. TGF-α and FGF were strongly associated with keratinocyte migration, re-epithelialisation, angiogenesis, fibroblast proliferation and cell differentiation. Furthermore, quantification of the tissue leukocytosis and DNA damage along with semiquantitative estimation of re-epithelialisation, fibroplasia and neovascularisation on histomorphologic scale could be efficiently used for screening the efficacy of orphan drugs against SM-induced skin injury.
Collapse
Affiliation(s)
- Vinay Lomash
- Department of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | | | | | | |
Collapse
|
8
|
Lomash V, Jadhav SE, Ahmed F, Vijayaraghavan R, Pant SC. Evaluation of wound-healing formulation against sulphur mustard-induced skin injury in mice. Hum Exp Toxicol 2011; 31:588-605. [PMID: 22144726 DOI: 10.1177/0960327111429139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blisters in human and animals. Remedies to SM-induced dermatotoxicity are still in experimental stage. Due to inevitable requirement of a wound-healing formulation against SM-induced skin lesions, efficacy of formulations including povidone iodine, Aloe vera gel, betaine or framycetin sulphate was evaluated in present study. SM was applied percutaneously (5 mg/kg) once on back region of Swiss albino mice; and after 24 hours, DRDE/WH-02 (Defence Research and Development Establishment/ Wound Healant- 02, containing polyvinylpyrrolidone [PVP], A. vera gel and betaine), Ovadine, Soframycin or A. vera gel were applied topically, daily for 3 or 7 days in different groups. Skin sections were subjected to histopathology, histomorphologic grading, tissue leukocytosis, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay and immunohistochemistry of inflammatory-reparative biomarkers. DRDE/WH-02 treated mice received highest score on the basis of histomorphologic scale and lowest number of TUNEL-positive cells compared to other groups. DRDE/WH-02 showed better wound healing as evidenced by widespread re-epithelialization, homogenous fibroplasias well supported by the expression of transforming growth factor-α, endothelial nitric oxide synthase (eNOS) and fibroblast growth factor. Upregulation of interleukin 6 in DRDE/WH-02-treated mice skin resulted in increased tissue leukocytosis and an early removal of tissue debris that initiated reparative process at faster rate compared to other groups. In conclusion, DRDE/WH-02 provided better healing effect and can be recommended as an effective wound healant against SM-induced skin injury.
Collapse
Affiliation(s)
- V Lomash
- Department of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | | | | | | | | |
Collapse
|