1
|
Le Franc A, Da Silva A, Lepetre-Mouelhi S. Nanomedicine and voltage-gated sodium channel blockers in pain management: a game changer or a lost cause? Drug Deliv Transl Res 2024; 14:2112-2145. [PMID: 38861139 DOI: 10.1007/s13346-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.
Collapse
Affiliation(s)
- Adélaïde Le Franc
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alexandre Da Silva
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | |
Collapse
|
2
|
Farivar N, Khazamipour N, Roberts ME, Nelepcu I, Marzban M, Moeen A, Oo HZ, Nakouzi NA, Dolleris C, Black PC, Daugaard M. Pulsed Photothermal Therapy of Solid Tumors as a Precondition for Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309495. [PMID: 38511548 DOI: 10.1002/smll.202309495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Photothermal therapy (PTT) refers to the use of plasmonic nanoparticles to convert electromagnetic radiation in the near infrared region to heat and kill tumor cells. Continuous wave lasers have been used clinically to induce PTT, but the treatment is associated with heat-induced tissue damage that limits usability. Here, the engineering and validation of a novel long-pulsed laser device able to induce selective and localized mild hyperthermia in tumors while reducing the heat affected zone and unwanted damage to surrounding tissue are reported. Long-pulsed PTT induces acute necrotic cell death in heat affected areas and the release of tumor associated antigens. This antigen release triggers maturation and stimulation of CD80/CD86 in dendritic cells in vivo that primes a cytotoxic T cell response. Accordingly, long-pulsed PTT enhances the therapeutic effects of immune checkpoint inhibition and increases survival of mice with bladder cancer. Combined, the data promote long-pulsed PTT as a safe and effective strategy for enhancing therapeutic responses to immune checkpoint inhibitors while minimizing unwanted tissue damage.
Collapse
Affiliation(s)
- Negin Farivar
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nastaran Khazamipour
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Morgan E Roberts
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Irina Nelepcu
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Mona Marzban
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Alireza Moeen
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nader Al Nakouzi
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Casper Dolleris
- Dolleris Scientific Corp., 2327 Collingwood Street, Vancouver, BC, V6R 3L2, Canada
| | - Peter C Black
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Mads Daugaard
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
3
|
Abbas I, SaifAlDien M, El-Bary AA, Egami RH, Elamin M. Theoretical estimation of the thermal damages of living tissues caused by laser irradiation in tumor thermal therapy. Heliyon 2024; 10:e29016. [PMID: 38617938 PMCID: PMC11015140 DOI: 10.1016/j.heliyon.2024.e29016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
This article aims to provide theoretical predictions for the thermal reactions of human tissues during tumor thermotherapy when exposed to laser irradiation and an external heat source. For the construction of a theoretical study of bioheat transfer, the selection of a suitable thermal model capable of accurately predicting the required thermal responses is essential. The effect of heat production by heat treatment on a spherical multilayer tumor tissue is evaluated using this approach. Analytical solution for the non-homogenous differential equations is derived in the Laplace domain. The study examines the impact of thermal relaxation time on tissue temperature and the subsequent thermal damage. The numerical findings of thermal damage and temperatures are depicted in a graphical representation. This model explains laser treatment, physical events, metabolic support, and blood perfusion. The numerical outcomes of the recommended model are validated by comparing them to the literatures.
Collapse
Affiliation(s)
- Ibrahim Abbas
- Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed SaifAlDien
- Department of Mathematics, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alaa A El-Bary
- Basic and Applied Science Institute, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria, Egypt
| | - Ria H Egami
- Department of Mathematics, College of Science and Humanities in Sulail, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Mawahib Elamin
- Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
4
|
Local thermal non-equilibrium bioheat transfer model for interstitial hyperthermia treatment of tumour cell: A numerical approach. J Therm Biol 2022; 110:103368. [DOI: 10.1016/j.jtherbio.2022.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
5
|
Ghanbari M, Rezazadeh G. Thermo-vibrational analyses of skin tissue subjected to laser heating source in thermal therapy. Sci Rep 2021; 11:22633. [PMID: 34799649 PMCID: PMC8605001 DOI: 10.1038/s41598-021-02006-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Laser-induced thermal therapy, due to its applications in various clinical treatments, has become an efficient alternative, especially for skin ablation. In this work, the two-dimensional thermomechanical response of skin tissue subjected to different types of thermal loading is investigated. Considering the thermoelastic coupling term, the two-dimensional differential equation of heat conduction in the skin tissue based on the Cattaneo–Vernotte heat conduction law is presented. The two-dimensional differential equation of the tissue displacement coupled with the two-dimensional hyperbolic heat conduction equation in the tissue is solved simultaneously to analyze the thermal and mechanical response of the skin tissue. The existence of mixed complicated boundary conditions makes the problem so complex and intricate. The Galerkin-based reduced-order model has been utilized to solve the two-sided coupled differential equations of vibration and heat transfer in the tissue with accompanying complicated boundary conditions. The effect of various types of heating sources such as thermal shock, single and repetitive pulses, repeating sequence stairs, ramp-type, and harmonic-type heating, on the thermomechanical response of the tissue is investigated. The temperature distribution in the tissue along depth and radial direction is also presented. The transient temperature and displacement response of tissue considering different relaxation times are studied, and the results are discussed in detail.
Collapse
Affiliation(s)
- Mina Ghanbari
- Mechanical Engineering Department, Urmia University of Technology, Urmia, Iran.
| | - Ghader Rezazadeh
- Mechanical Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran.,South Ural State University, Lenin prospect 76, Chelyabinsk, Russian Federation, 454080
| |
Collapse
|
6
|
Kabiri A, Talaee MR. Analysis of hyperbolic Pennes bioheat equation in perfused homogeneous biological tissue subject to the instantaneous moving heat source. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04379-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractThe one-dimensional hyperbolic Pennes bioheat equation under instantaneous moving heat source is solved analytically based on the Eigenvalue method. Comparison with results of in vivo experiments performed earlier by other authors shows the excellent prediction of the presented closed-form solution. We present three examples for calculating the Arrhenius equation to predict the tissue thermal damage analysis with our solution, i.e., characteristics of skin, liver, and kidney are modeled by using their thermophysical properties. Furthermore, the effects of moving velocity and perfusion rate on temperature profiles and thermal tissue damage are investigated. Results illustrate that the perfusion rate plays the cooling role in the heating source moving path. Also, increasing the moving velocity leads to a decrease in absorbed heat and temperature profiles. The closed-form analytical solution could be applied to verify the numerical heating model and optimize surgery planning parameters.
Collapse
|
7
|
Analytical Estimation of Temperature in Living Tissues Using the TPL Bioheat Model with Experimental Verification. MATHEMATICS 2020. [DOI: 10.3390/math8071188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study is to propose the analytical method associated with Laplace transforms and experimental verification to estimate thermal damages and temperature due to laser irradiation by utilizing measurement information of skin surface. The thermal damages to the tissues are totally estimated by denatured protein ranges using the formulations of Arrhenius. By using Laplace transformations, the exact solution of all physical variables is obtained. Numerical results for the temperature and thermal damage are presented graphically. Furthermore, the comparisons between the numerical calculations with experimental verification show that the three-phase lag bioheat mathematical model is an efficient tool for estimating the bioheat transfer in skin tissue.
Collapse
|
8
|
Kabiri A, Talaee MR. Thermal field and tissue damage analysis of moving laser in cancer thermal therapy. Lasers Med Sci 2020; 36:583-597. [PMID: 32594347 DOI: 10.1007/s10103-020-03070-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
In this paper, a closed-form analytical solution of hyperbolic Pennes bioheat equation is obtained for spatial evolution of temperature distributions during moving laser thermotherapy of the skin and kidney tissues. The three-dimensional cubic homogeneous perfused biological tissue is adopted as a media and the Gaussian distributed function in surface and exponentially distributed in depth is used for modeling of laser moving heat source. The solution procedure is Eigen value method which leads to a closed form solution. The effect of moving velocity, perfusion rate, laser intensity, absorption and scattering coefficients, and thermal relaxation time on temperature profiles and tissue thermal damage are investigated. Results are illustrated that the moving velocity and the perfusion rate of the tissues are the main important parameters in produced temperatures under moving heat source. The higher perfusion rate of kidney compared with skin may lead to lower induced temperature amplitude in moving path of laser due to the convective role of the perfusion term. Furthermore, the analytical solution can be a powerful tool for analysis and optimization of practical treatment in the clinical setting and laser procedure therapeutic applications and can be used for verification of other numerical heating models.
Collapse
Affiliation(s)
- Ali Kabiri
- School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Talaee
- School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
9
|
Alzahrani FS, Abbas IA. Analytical estimations of temperature in a living tissue generated by laser irradiation using experimental data. J Therm Biol 2019; 85:102421. [DOI: 10.1016/j.jtherbio.2019.102421] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 11/28/2022]
|
10
|
Noroozi MJ, Goodarzi M. Nonlinear analysis of a non-Fourier heat conduction problem in a living tissue heated by laser source. INT J BIOMATH 2017. [DOI: 10.1142/s1793524517501078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of laser, as a heat source, on a one-dimensional finite living tissue was studied in this paper. The dual phase lagging (DPL) non-Fourier heat conduction model was used for thermal analysis. The thermal conductivity was assumed temperature-dependent, resulting in a nonlinear equation. The obtained equations were solved using the approximate-analytical Adomian decomposition method (ADM). It was concluded that the nonlinear analysis was important in non-Fourier heat conduction problems. Moreover, a good agreement between the present nonlinear model and experimental result was obtained.
Collapse
Affiliation(s)
| | - Majid Goodarzi
- Faculty of Engineering, University of Ayatollah Ozma Boroujerdi, Boroujerd, Iran
| |
Collapse
|
11
|
Santamaria CM, Woodruff A, Yang R, Kohane DS. Drug delivery systems for prolonged duration local anesthesia. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2017; 20:22-31. [PMID: 28970739 PMCID: PMC5621744 DOI: 10.1016/j.mattod.2016.11.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Numerous drug delivery systems have been applied to the problem of providing prolonged duration local anesthesia (PDLA). Here we review the rationale for PDLA, the desirable features for and important attributes of such systems, and specific examples that have been developed.
Collapse
Affiliation(s)
- Claudia M Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Alan Woodruff
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Lee SL, Lu YH. Modeling of bioheat equation for skin and a preliminary study on a noninvasive diagnostic method for skin burn wounds. Burns 2014; 40:930-9. [DOI: 10.1016/j.burns.2013.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 01/19/2023]
|
13
|
Abstract
A reservoir that could be remotely triggered to release a drug would enable the patient or physician to achieve on-demand, reproducible, repeated, and tunable dosing. Such a device would allow precise adjustment of dosage to desired effect, with a consequent minimization of toxicity, and could obviate repeated drug administrations or device implantations, enhancing patient compliance. It should exhibit low off-state leakage to minimize basal effects, and tunable on-state release profiles that could be adjusted from pulsatile to sustained in real time. Despite the clear clinical need for a device that meets these criteria, none has been reported to date to our knowledge. To address this deficiency, we developed an implantable reservoir capped by a nanocomposite membrane whose permeability was modulated by irradiation with a near-infrared laser. Irradiated devices could exhibit sustained on-state drug release for at least 3 h, and could reproducibly deliver short pulses over at least 10 cycles, with an on/off ratio of 30. Devices containing aspart, a fast-acting insulin analog, could achieve glycemic control after s.c. implantation in diabetic rats, with reproducible dosing controlled by the intensity and timing of irradiation over a 2-wk period. These devices can be loaded with a wide range of drug types, and therefore represent a platform technology that might be used to address a wide variety of clinical indications.
Collapse
|
14
|
Ratovoson D, Huon V, Jourdan F. A 3D finite element model for hyperthermia injury of blood-perfused skin. Comput Methods Biomech Biomed Engin 2013; 18:233-42. [DOI: 10.1080/10255842.2013.790963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|