1
|
Hsieh MC, Chang CY, Hsu CH, Ching CTS, Liao LD. Comprehensive validation of a compact laser speckle contrast imaging system for vascular function assessment: from the laboratory to the clinic. Med Biol Eng Comput 2024:10.1007/s11517-024-03211-y. [PMID: 39446280 DOI: 10.1007/s11517-024-03211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Proper organ functioning relies on adequate blood circulation; thus, monitoring blood flow is crucial for early disease diagnosis. Laser speckle contrast imaging (LSCI) is a noninvasive technique that is widely used for measuring superficial blood flow. In this study, we developed a portable LSCI system using an 805-nm near-infrared laser and a monochrome CMOS camera with a 10 × macro zoom lens. The system achieved a high-resolution imaging (1280 × 1024 pixels) with a working distance of 10 to 35 cm. The relative flow velocities were visualized via a spatial speckle contrast analysis algorithm with a 5 × 5 sliding window. In vitro experiments demonstrated the system's ability to image flow velocities in a fluid model, and a linear relationship was observed between the actual flow rate and the relative flow rate obtained by the system. The correlation coefficient (R2) exceeded 0.83 for volumetric flow rates of 0 to 0.2 ml/min when channel widths were greater than 1.2 mm, and R2 > 0.94 was obtained for channel widths exceeding 1.6 mm. Comparisons with laser Doppler flowmetry (LDF) revealed a strong positive correlation between the LSCI and LDF results. In vivo experiments captured postocclusive reactive hyperemic responses in rat hind limbs and human palms and feet. The main research contribution is the development of this compact and portable LSCI device, as well as the validation of its reliability and convenience in various scenarios and environments. Future applications of this technology include evaluating blood flow changes during skin injuries, such as abrasions, burns, and diabetic foot ulcers, to aid medical institutions in treatment optimization and to reduce treatment duration.
Collapse
Affiliation(s)
- Meng-Che Hsieh
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, 145, Xingda Road, South District, Taichung City, 402, Taiwan
| | - Chia-Yu Chang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
| | - Ching-Han Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Congo Tak Shing Ching
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, 145, Xingda Road, South District, Taichung City, 402, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, 145, Xingda Road, South District, Taichung City, 402, Taiwan
- Department of Electrical Engineering, National Chi Nan University, Puli Township, 54561, Taiwan
- International Doctoral Program in Agriculture, National Chung Hsing University, Taichung, 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan.
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, 145, Xingda Road, South District, Taichung City, 402, Taiwan.
| |
Collapse
|
2
|
Poelchow F, Codde J, Kendell R, Edgar DW, Wood FM. A randomised investigation of film-forming silicone gel in superficial partial thickness face and neck burn patients: Indication of improved early scar pigmentation outcomes. Burns 2024; 50:1605-1613. [PMID: 38614897 DOI: 10.1016/j.burns.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Burns to the face and neck are a source of considerable distress and a challenge to manage with dressings. Further, these often superficial injuries pose a risk of scarring and altered pigmentation. Silicone gels have emerged as a potential solution to the challenges of conservative management for face and neck burn injuries. The aims of this study were to explore the effect of topical silicone compared to routine treatment of conservatively managed burns to the face and neck. METHODS This single-blind, randomised, controlled trial compared topical silicone film-forming dressing to standard of care for superficial partial thickness burns to the face and neck. Time to healing was the primary outcome and secondary outcomes included: 1) scar assessments (modified Vancouver Scar Scale, Dermalab Combo and Patient and Observer Scar Assessment Scale) at six weeks and three months; and 2) pain intensity scale at wound review appointments. RESULTS Of the 55 participants in the face/neck study, 34 were male and 21 were female. Median age was 36 years (range from 25 to 47 years). The median time to healing for the silicone group was 9 days (CI 7.6 -10.4) and the control group was 7 days (CI 5.3- 8.7), p = 0.056. Analysis demonstrated significantly reduced pigmentation at six weeks in mVSS scores for the silicone group (Md = 0, IQR = 0) compared to the control group (Md = 0, IQR = 0 - 3), p = 0.043. We found no evidence of differences in reported pain between the groups (Silicone - Md = 1.15, IQR 0.3 - 4.5 vs control group - Md = 1.5, IQR 0.6 - 3.8, z = -0.63, p = 0.53). No other differences were observed, and no adverse events were associated with the topical silicone in the study whereas an infection and a reaction were experienced in the control group. CONCLUSION Film-forming silicone gel had comparable effects to standard of care emollient on wound healing of superficial partial thickness burns of the face and neck. Silicone treated wounds were associated with a significant improvement in scar pigmentation outcome at six weeks post-burn.
Collapse
Affiliation(s)
- Fiona Poelchow
- State Adult Burn Unit, Fiona Stanley Hospital, Murdoch, Western Australia, Australia; The Institute for Health Research, The University of Notre Dame Australia, Fremantle, Western Australia, Australia; School of Physiotherapy, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Jim Codde
- The Institute for Health Research, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Rosemary Kendell
- State Adult Burn Unit, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Dale W Edgar
- State Adult Burn Unit, Fiona Stanley Hospital, Murdoch, Western Australia, Australia; The Institute for Health Research, The University of Notre Dame Australia, Fremantle, Western Australia, Australia; Fiona Wood Foundation, Perth, Western Australia, Australia; Armadale Kalamunda Group Health Service, Safety and Quality Unit, East Metropolitan Health Service, Mt Nasura, Western Australia, Australia; Burn Injury Research Unit, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Fiona M Wood
- State Adult Burn Unit, Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Fiona Wood Foundation, Perth, Western Australia, Australia; Burn Injury Research Unit, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
3
|
Yıldız M, Sarpdağı Y, Okuyar M, Yildiz M, Çiftci N, Elkoca A, Yildirim MS, Aydin MA, Parlak M, Bingöl B. Segmentation and classification of skin burn images with artificial intelligence: Development of a mobile application. Burns 2024; 50:966-979. [PMID: 38331663 DOI: 10.1016/j.burns.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
AIM This study was conducted to determine the segmentation, classification, object detection, and accuracy of skin burn images using artificial intelligence and a mobile application. With this study, individuals were able to determine the degree of burns and see how to intervene through the mobile application. METHODS This research was conducted between 26.10.2021-01.09.2023. In this study, the dataset was handled in two stages. In the first stage, the open-access dataset was taken from https://universe.roboflow.com/, and the burn images dataset was created. In the second stage, in order to determine the accuracy of the developed system and artificial intelligence model, the patients admitted to the hospital were identified with our own design Burn Wound Detection Android application. RESULTS In our study, YOLO V7 architecture was used for segmentation, classification, and object detection. There are 21018 data in this study, and 80% of them are used as training data, and 20% of them are used as test data. The YOLO V7 model achieved a success rate of 75.12% on the test data. The Burn Wound Detection Android mobile application that we developed in the study was used to accurately detect images of individuals. CONCLUSION In this study, skin burn images were segmented, classified, object detected, and a mobile application was developed using artificial intelligence. First aid is crucial in burn cases, and it is an important development for public health that people living in the periphery can quickly determine the degree of burn through the mobile application and provide first aid according to the instructions of the mobile application.
Collapse
Affiliation(s)
- Metin Yıldız
- Department of Nursing, Sakarya University, Sakarya, Turkey.
| | - Yakup Sarpdağı
- Department of Nursing Van Yuzuncu Yil University, Turkey
| | - Mehmet Okuyar
- Sakarya University of Applied Sciences Biomedical Engineering, Sakarya, Turkey
| | - Mehmet Yildiz
- Sakarya University of Applied Sciences, Distance Education Research and Application Center, Sakarya, Turkey
| | - Necmettin Çiftci
- Muş Alparslan University, Faculty of Health Sciences, Department of Nursing, 49100 Muş, Turkey
| | - Ayşe Elkoca
- Gaziantep Islamic University of Science and Technology Faculty of Health Sciences, Midwifery, Turkey
| | - Mehmet Salih Yildirim
- Vocational School of Health Services, Agri Ibrahim Cecen University School of Health, Agri, Turkey
| | | | - Mehmet Parlak
- Ataturk University, Department of Nursing, Erzurum, Turkey
| | - Bünyamin Bingöl
- Sakarya University, Electrical and Electronics Engineering, Sakarya, Turkey
| |
Collapse
|
4
|
Labouchère A, Haselbach D, Michetti M, Pythoud C, Raffoul W, Applegate LA, Hirt-Burri N, de Buys Roessingh A. A New Ex Vivo Human Skin Burn Model. J Burn Care Res 2024; 45:308-317. [PMID: 37202124 PMCID: PMC10911692 DOI: 10.1093/jbcr/irad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/20/2023]
Abstract
Currently, most burn models for preclinical testing are on animals. For obvious ethical, anatomical, and physiological reasons, these models could be replaced with optimized ex vivo systems. The creation of a burn model on human skin using a pulsed dye laser could represent a relevant model for preclinical research. Six samples of excess human abdominal skin were obtained within one hour after surgery. Burn injuries were induced on small samples of cleaned skin using a pulsed dye laser on skin samples, at varying fluences, pulse numbers and illumination duration. In total, 70 burn injuries were performed on skin ex vivo before being histologically and dermato-pathologically analyzed. Irradiated burned skin samples were classified with a specified code representing burn degrees. Then, a selection of samples was inspected after 14 and 21 days to assess their capacity to heal spontaneously and re-epithelize. We determined the parameters of a pulsed dye laser inducing first, second, and third degree burns on human skin and with fixed parameters, especially superficial and deep second degree burns. After 21 days with the ex vivo model, neo-epidermis was formed. Our results showed that this simple, rapid, user-independent process creates reproducible and uniform burns of different, predictable degrees that are close to clinical reality. Human skin ex vivo models can be an alternative to and complete animal experimentation, particularly for preclinical large screening. This model could be used to foster the testing of new treatments on standardized degrees of burn injuries and thus improve therapeutic strategies.
Collapse
Affiliation(s)
- Ania Labouchère
- PlasticReconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Daniel Haselbach
- PlasticReconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Catherine Pythoud
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- PlasticReconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Anthony de Buys Roessingh
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Li H, Bu Q, Shi X, Xu X, Li J. Non-invasive medical imaging technology for the diagnosis of burn depth. Int Wound J 2024; 21:e14681. [PMID: 38272799 PMCID: PMC10805628 DOI: 10.1111/iwj.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
Currently, the clinical diagnosis of burn depth primarily relies on physicians' judgements based on patients' symptoms and physical signs, particularly the morphological characteristics of the wound. This method highly depends on individual doctors' clinical experience, proving challenging for less experienced or primary care physicians, with results often varying from one practitioner to another. Therefore, scholars have been exploring an objective and quantitative auxiliary examination technique to enhance the accuracy and consistency of burn depth diagnosis. Non-invasive medical imaging technology, with its significant advantages in examining tissue surface morphology, blood flow in deep and changes in structure and composition, has become a hot topic in burn diagnostic technology research in recent years. This paper reviews various non-invasive medical imaging technologies that have shown potential in burn depth diagnosis. These technologies are summarized and synthesized in terms of imaging principles, current research status, advantages and limitations, aiming to provide a reference for clinical application or research for burn specialists.
Collapse
Affiliation(s)
- Hang Li
- Department of Burns and Plastic SurgerySecond Affiliated Hospital of Air Force Medical UniversityXi'anP.R. China
| | - Qilong Bu
- Bioinspired Engineering and Biomechanics CenterXi'an Jiaotong UniversityXi'anP.R. China
| | - Xufeng Shi
- Department of Burns and Plastic SurgerySecond Affiliated Hospital of Air Force Medical UniversityXi'anP.R. China
| | - Xiayu Xu
- Bioinspired Engineering and Biomechanics CenterXi'an Jiaotong UniversityXi'anP.R. China
| | - Jing Li
- Department of Burns and Plastic SurgerySecond Affiliated Hospital of Air Force Medical UniversityXi'anP.R. China
| |
Collapse
|
6
|
Li Z, Huang J, Tong X, Zhang C, Lu J, Zhang W, Song A, Ji S. GL-FusionNet: Fusing global and local features to classify deep and superficial partial thickness burn. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10153-10173. [PMID: 37322927 DOI: 10.3934/mbe.2023445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Burns constitute one of the most common injuries in the world, and they can be very painful for the patient. Especially in the judgment of superficial partial thickness burns and deep partial thickness burns, many inexperienced clinicians are easily confused. Therefore, in order to make burn depth classification automated as well as accurate, we have introduced the deep learning method. This methodology uses a U-Net to segment burn wounds. On this basis, a new thickness burn classification model that fuses global and local features (GL-FusionNet) is proposed. For the thickness burn classification model, we use a ResNet50 to extract local features, use a ResNet101 to extract global features, and finally implement the add method to perform feature fusion and obtain the deep partial or superficial partial thickness burn classification results. Burns images are collected clinically, and they are segmented and labeled by professional physicians. Among the segmentation methods, the U-Net used achieved a Dice score of 85.352 and IoU score of 83.916, which are the best results among all of the comparative experiments. In the classification model, different existing classification networks are mainly used, as well as a fusion strategy and feature extraction method that are adjusted to conduct experiments; the proposed fusion network model also achieved the best results. Our method yielded the following: accuracy of 93.523, recall of 93.67, precision of 93.51, and F1-score of 93.513. In addition, the proposed method can quickly complete the auxiliary diagnosis of the wound in the clinic, which can greatly improve the efficiency of the initial diagnosis of burns and the nursing care of clinical medical staff.
Collapse
Affiliation(s)
- Zhiwei Li
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Jie Huang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200444, China
| | - Xirui Tong
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200444, China
| | - Chenbei Zhang
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Jianyu Lu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200444, China
| | - Wei Zhang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200444, China
| | - Anping Song
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Shizhao Ji
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200444, China
| |
Collapse
|
7
|
Tsunoi Y, Sato N, Nishidate I, Ichihashi F, Saitoh D, Sato S. Burn depth assessment by dual-wavelength light emitting diodes-excited photoacoustic imaging in rats. Wound Repair Regen 2023; 31:69-76. [PMID: 36177703 DOI: 10.1111/wrr.13056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/01/2023]
Abstract
Accurate burn depth assessment is crucial to determine treatment plans for burn patients. We have previously proposed a method for performing burn depth assessments based on photoacoustic (PA) imaging, and we have demonstrated the validity of this method, which allows the successful detection of PA signals originating from the blood under the bloodless burned tissue, using rat burn models. Based on these findings, we started a clinical study in which we faced two technical issues: (1) When the burn depth was shallow, PA signals due to skin contamination and/or melanin in the epidermis (surface signals) could not be distinguished from PA signals originating from the blood in the dermis; (2) the size of the system was too large. To solve these issues, we propose a burn depth diagnosis based on dual-wavelength light emitting diodes (LEDs)-excited PA imaging. The use of LEDs rendered the system compact compared to the previous one that used a conventional solid-state laser. We replicated human burned skin by applying a titrated synthetic melanin solution onto the wound surface in albino rat burn models and measured their burn depths by PA excitation at 690 and 850 nm, where melanin and haemoglobin show greatly different absorption coefficients. As a result, the surface signals were eliminated by subtracting the PA signals at 690 nm from those at 850 nm. The resultant estimated burn depths were strongly correlated with the histological assessment results. The validity of the proposed method was also examined using a burn model of rats with real melanin.
Collapse
Affiliation(s)
- Yasuyuki Tsunoi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Naoto Sato
- Research and Development Department, Cyberdyne, Inc, Tsukuba, Ibaraki, Japan
| | - Izumi Nishidate
- Graduate School of Bio-application and Systems Engineering, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Fumiyuki Ichihashi
- Research and Development Department, Cyberdyne, Inc, Tsukuba, Ibaraki, Japan
| | - Daizoh Saitoh
- Division of Basic Traumatology, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| |
Collapse
|
8
|
A deep convolutional neural network-based approach for detecting burn severity from skin burn images. MACHINE LEARNING WITH APPLICATIONS 2022. [DOI: 10.1016/j.mlwa.2022.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Han S, Contreras MI, Bazrafkan A, Rafi M, Dara SM, Orujyan A, Panossian A, Crouzet C, Lopour B, Choi B, Wilson RH, Akbari Y. Cortical Anoxic Spreading Depolarization During Cardiac Arrest is Associated with Remote Effects on Peripheral Blood Pressure and Postresuscitation Neurological Outcome. Neurocrit Care 2022; 37:139-154. [PMID: 35729464 PMCID: PMC9259534 DOI: 10.1007/s12028-022-01530-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/29/2022] [Indexed: 10/25/2022]
Abstract
BACKGROUND Spreading depolarizations (SDs) are self-propagating waves of neuronal and glial depolarizations often seen in neurological conditions in both humans and animal models. Because SD is thought to worsen neurological injury, the role of SD in a variety of cerebral insults has garnered significant investigation. Anoxic SD is a type of SD that occurs because of anoxia or asphyxia. Although asphyxia leading to a severe drop in blood pressure may affect cerebral hemodynamics and is widely known to cause anoxic SD, the effect of anoxic SD on peripheral blood pressure in the extremities has not been investigated. This relationship is especially important to understand for conditions such as circulatory shock and cardiac arrest that directly affect both peripheral and cerebral perfusion in addition to producing anoxic SD in the brain. METHODS In this study, we used a rat model of asphyxial cardiac arrest to investigate the role of anoxic SD on cerebral hemodynamics and metabolism, peripheral blood pressure, and the relationship between these variables in 8- to 12-week-old male rats. We incorporated a multimodal monitoring platform measuring cortical direct current simultaneously with optical imaging. RESULTS We found that during anoxic SD, there is decoupling of peripheral blood pressure from cerebral blood flow and metabolism. We also observed that anoxic SD may modify cerebrovascular resistance. Furthermore, shorter time difference between anoxic SDs measured at different locations in the same rat was associated with better neurological outcome on the basis of the recovery of electrocorticography activity (bursting) immediately post resuscitation and the neurological deficit scale score 24 h post resuscitation. CONCLUSIONS To our knowledge, this is the first study to quantify the relationship between peripheral blood pressure, cerebral hemodynamics and metabolism, and neurological outcome in anoxic SD. These results indicate that the characteristics of SD may not be limited to cerebral hemodynamics and metabolism but rather may also encompass changes in peripheral blood flow, possibly through a brain-heart connection, providing new insights into the role of anoxic SD in global ischemia and recovery.
Collapse
Affiliation(s)
- Sangwoo Han
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | | | - Afsheen Bazrafkan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Masih Rafi
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Shirin M Dara
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Ani Orujyan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Anais Panossian
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Christian Crouzet
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA
| | - Beth Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Bernard Choi
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.,Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Robert H Wilson
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.,Department of Surgery, University of California, Irvine, Irvine, CA, USA.,Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yama Akbari
- Department of Neurology, University of California, Irvine, Irvine, CA, USA. .,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA. .,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
10
|
Lertsakdadet BS, Kennedy GT, Stone R, Kowalczewski C, Kowalczewski AC, Natesan S, Christy RJ, Durkin AJ, Choi B. Assessing multimodal optical imaging of perfusion in burn wounds. Burns 2022; 48:799-807. [PMID: 34696954 DOI: 10.1016/j.burns.2021.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/04/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022]
Abstract
A critical need exists for early, accurate diagnosis of burn wound severity to help identify the course of treatment and outcome of the wound. Laser speckle imaging (LSI) is a promising blood perfusion imaging approach, but it does not account for changes in tissue optical properties that can occur with burn wounds, which are highly dynamic environments. Here, we studied optical property dynamics following burn injury and debridement and the associated impact on interpretation of LSI measurements of skin perfusion. We used spatial frequency domain imaging (SFDI) measurements of tissue optical properties to study the impact of burn-induced changes in these properties on LSI measurements. An established preclinical porcine model of burn injury was used (n = 8). SFDI and LSI data were collected from burn wounds of varying severity. SFDI measurements demonstrate that optical properties change in response to burn injury in a porcine model. We then apply theoretical modeling to demonstrate that the measured range of optical property changes can affect the interpretation of LSI measurements of blood flow, but this effect is minimal for most of the measured data. Collectively, our results indicate that, even with a dynamic burn wound environment, blood-flow measurements with LSI can serve as an appropriate strategy for accurate assessment of burn severity.
Collapse
Affiliation(s)
- Ben S Lertsakdadet
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA; Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
| | - Gordon T Kennedy
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA.
| | - Randolph Stone
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Christine Kowalczewski
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Andrew C Kowalczewski
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Shanmugasundaram Natesan
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Robert J Christy
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, TX 78234, USA.
| | - Anthony J Durkin
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA; Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA; Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA; Department of Surgery, University of California, Irvine, CA, 92697, USA; Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Preparation, biocompatibility, and wound healing effects of O-carboxymethyl chitosan nonwoven fabrics in partial-thickness burn model. Carbohydr Polym 2022; 280:119032. [PMID: 35027134 DOI: 10.1016/j.carbpol.2021.119032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
This study was aimed at preparing O-carboxymethyl chitosan (CM-CTS) fabrics, and examining the wound healing effects on partial-thickness burn. The functional polysaccharides were produced from chitosan needle-punched nonwovens reacted with chloroacetic acid. Then the biocompatibility and biological functions were evaluated through fibroblast L-929 and SD rats. CM-CTS fabrics were obtained with elongation at break more than 42%, tensile strength reaching 0.65 N/mm2, and water vapor transmission rate about 2600 g/m2∙24 h. Moreover, CM-CTS fabrics could effectively promote the mouse L-929 migration in vitro. CM-CTS fabrics yielded satisfactory results in angiogenesis, collagen deposition, interleukin-6 content, transforming growth factor level and healing rate, which were superior to the positive control and model groups after rats suffering with partial-thickness burn. In conclusion, CM-CTS fabrics possessed proper mechanical properties, air permeability, favorable biocompatibility, acceleration on fibroblasts migration and healing capacity for partial-thickness burn injury, and owned good potential as high-quality wound dressing.
Collapse
|
12
|
Weiss F, Agua K, Weinzierl A, Schuldt A, Egana JT, Schlitter AM, Steiger K, Machens HG, Harder Y, Schmauss D. A modified burn comb model with a new dorsal frame that allows for local treatment in partial-thickness burns in rats. J Burn Care Res 2022; 43:1329-1336. [PMID: 35259276 DOI: 10.1093/jbcr/irac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Burn wound progression (BWP) leads to vertical and horizontal injury extension. The "burn comb model" is commonly used, in which a full-thickness burn with intercalated unburned interspaces is induced. We aimed to establish an injury progressing to the intermediate dermis, allowing repeated wound evaluation. Furthermore, we present a new dorsal frame that enables topical drug application. 8 burn field and 6 interspaces were induced on each of 17 rats' dorsa with a 10-second burn comb application. A developed 8-panel aluminum frame was sutured onto 12 animals and combined with an Elizabethan collar. Over 14 days, macroscopic & histologic wound assessment and Laser-Speckle-Contrast-Imaging (LSCI) were performed besides evaluation of frame durability. The 10-second group was compared to 9 animals injured with a full-thickness 60-second model. Frame durability was sufficient up to day 4 with 8 of 12 frames (67%) still mounted. The 60-second burn led to an increased extent of interspace necrosis (p=0.002). The extent of necrosis increased between days 1 and 2 (p=0.001), following the 10-second burn (24%±SEM 8% to 40%±SEM 6%) and the 60-second burn (57%±SEM 6% to 76%±SEM 4%). Interspace LSCI perfusion was higher than burn field perfusion. It earlier reached baseline levels in the 10-second group (on day 1: 142%±SEM 9% vs. 60%±SEM 5%; p<0.001). Within day 1, the 10-second burn showed histological progression to the intermediate dermis, both in interspaces and burn fields. This burn comb model with its newly developed fixed dorsal frame allows investigation of topical agents to treat BWP in partial-thickness burns.
Collapse
Affiliation(s)
- Fabian Weiss
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kariem Agua
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Andrea Weinzierl
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Anna Schuldt
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jose Tomas Egana
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anna Melissa Schlitter
- Institute of Pathology, School of Medicine, Technische Universität München, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Yves Harder
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Daniel Schmauss
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
13
|
Jiang Z, Wang Y, Li L, Hu H, Wang S, Zou M, Liu W, Han B. Preparation, Characterization, and Biological Evaluation of Transparent Thin Carboxymethyl-Chitosan/Oxidized Carboxymethyl Cellulose Films as New Wound Dressings. Macromol Biosci 2021; 22:e2100308. [PMID: 34752675 DOI: 10.1002/mabi.202100308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Indexed: 01/05/2023]
Abstract
Full thickness burns in which the damage penetrates deep into the skin layers and reaches underneath the muscle, compel the need for more effective cure. Herein, cross-linked carboxymethyl-chitosan (CM-chitosan) films, prepared by Schiff base association with oxidized carboxymethyl cellulose (OCMC), are investigated regarding the wound healing capacity on full thickness burn injuries in vivo. Transparent thin CM-chitosan/OCMC films are obtained with tensile strength reaching 6.11 MPa, elongation at break above 27%, and water absorption more than 800%, which operates in favor of absorbing excess exudate and monitoring the wound status. Furthermore, the nonadherent CM-chitosan/OCMC films, with satisfactory biodegradability, cell, and tissue compatibility, are readily used to the wound sites and easily removed following therapy on scalded tissue so as to alleviate the suffering from burn. The films efficiently promote epithelial and dermal regeneration compared to the control, achieving 75.9% and 94.4% wound closure, respectively, after 14 and 27 days. More importantly, CM-chitosan/OCMC films accelerate wound healing with natural mechanisms which include controlling inflammatory response, reducing apoptosis, promoting fibroblast cell proliferation, and collagen formation. In conclusion, the CM-chitosan/OCMC films elevate the repair ratio of burn injuries and have great potential for facilitating the healing process on full-thickness exuding wounds.
Collapse
Affiliation(s)
- Zhiwen Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yanting Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Lulu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Huiwen Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Mingyu Zou
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| |
Collapse
|
14
|
Sayadi LR, Rowland R, Naides A, Tomlinson L, Ponticorvo A, Durkin AJ, Widgerow AD. A Quantitative Assessment of Wound Healing With Oxygenated Micro/Nanobubbles in a Preclinical Burn Model. Ann Plast Surg 2021; 87:421-426. [PMID: 34559711 PMCID: PMC8555472 DOI: 10.1097/sap.0000000000003017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Burns are devastating injuries, carry significant morbidity, and require long-term treatment or multiple reconstructive procedures. Wound healing and secondary insults caused by burn wound conversion are amendable to therapeutic intervention, where ischemia has been cited as one of the major factors (Dermatol Surg. 2008;34:1159-1169). Halting injury progression in the zone of stasis is crucial as conversion creates increased burn surface area and depth, leading to local and systemic consequences (J Burns Wounds. 2006;5:e2). Oxygen-carrying micro/nanobubbles, MNB(O2), offer a novel technology that can be used to effectively deliver oxygen to burn wounds and potentially counteract burn wound ischemia. METHODS Topical irrigation with MNB(O2) of full-thickness burn wounds on a rodent model (n = 3) was compared against saline-treated controls (n = 3). Tissue structure (reduced scattering coefficient, μs'), oxyhemoglobin concentration (cHbO2), and tissue perfusion were quantified over the course of 28 days through spatial frequency domain imaging and laser speckle imaging. Histological samples taken at the end of the experiment were examined for evidence of wound healing. RESULTS Findings in this preliminary study showed hastened healing with significant differences in spatial frequency domain imaging-measured μs' during wound healing (days 11-28) in MNB(O2) group. The healing "tipping point" seemed to occur at days 9 to 11 with increased collagen organization and increased cHbO2 occurring around that period confirming the gross healing improvements observed. In addition, histological evidence indicated that only the MNB(O2) burns had reached the remodeling phase by the end of 28-day study period. CONCLUSIONS These preliminary findings propose the potential of MNB(O2) as a topical method for improving burn wound healing.
Collapse
Affiliation(s)
- Lohrasb R. Sayadi
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Ave., Suite 650, Orange, CA 92868
| | - Rebecca Rowland
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92617
| | - Alexandra Naides
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Ave., Suite 650, Orange, CA 92868
| | - Luke Tomlinson
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Ave., Suite 650, Orange, CA 92868
| | - Adrien Ponticorvo
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92617
| | - Anthony J. Durkin
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92617
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, CA 92697
| | - Alan D. Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, 200 S. Manchester Ave., Suite 650, Orange, CA 92868
| |
Collapse
|
15
|
Jiang X, Li F, Chi Y, Chen X, Luo Y, Ye Q, Song W, Li G. Application of contrast-enhanced ultrasound in the diagnosis of burn depth. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1315. [PMID: 34532452 PMCID: PMC8422095 DOI: 10.21037/atm-21-3715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/11/2021] [Indexed: 11/06/2022]
Abstract
Background The diagnosis of burn depth often relies on the subjective judgment of plastic surgeons. Contrast-enhanced ultrasound (CEUS) can visualize the microcirculation well and has potential value in diagnosing the depth of burn wounds. We assessed the depth of the burn wounds by CEUS, and compared the results with histological examination. Methods Two rhesus monkeys were used, and multiple burn wounds with different depths were made on their backs. The echo of the dermis and subcutaneous tissue were observed for each wound, and the thickness of the dermis was measured. CEUS was performed to evaluate the depth of burn wounds and compared with pathological results. Results (I) After scalding, dermal tissue edema occurred, and the thickness of the dermis measured by a US tended to increase gradually, related to the time of scalding and the order of measurement. (II) With the prolongation of the burn time, the depth of filling by contrast agent gradually increased, from the superficial dermis to the deep dermis and subcutaneous tissue, indicating that the depth of tissue damage gradually increased. This was consistent with the pathological observation. The thickness of the healthy dermis was about 1.3-1.8 mm, and 2.7-4.1 mm after scalding. The depth of the burn wounds was 0.9-4.1 mm, accounting for 32-100% of the full skin thickness. Conclusions CEUS is a convenient and fast examination method that is consistent with pathological diagnosis of the depth of burn wounds and could prove valuable for the accurate assessment of burn injuries.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Ultrasound Diagnosis, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Feng Li
- Burns and Plastic Department, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yunfei Chi
- Burns and Plastic Department, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Xin Chen
- Burns and Plastic Department, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yukun Luo
- Department of Ultrasound Diagnosis, The First Medical Center of PLA General Hospital, Beijing, China
| | - Qinggui Ye
- Department of Ultrasound Diagnosis, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Wenjing Song
- Department of Ultrasound Diagnosis, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Guoping Li
- Grand Life Science & Technology, Ltd., Beijing, China
| |
Collapse
|
16
|
Wang C, Chen X, Hong J, Meng L, Cheng W, Zhu X, Lu J, Li P. Extendable, large-field multi-modal optical imaging system for measuring tissue hemodynamics. BIOMEDICAL OPTICS EXPRESS 2020; 11:2339-2351. [PMID: 32499927 PMCID: PMC7249820 DOI: 10.1364/boe.386197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 05/08/2023]
Abstract
Simultaneous imaging of multiple hemodynamic parameters helps to evaluate the physiological and pathological status of biological tissue. To achieve multimodal hemodynamics imaging with a large field of view, an infinite conjugate relay lens system compatible with the standard C-Mount camera lens is designed to adapt one camera lens with multiple CCD/CMOS cameras for simultaneously multi-wavelength imaging. Using this relay lens system, dual wavelength reflectance imaging and laser speckle contrast imaging were combined to simultaneously detect the changes in blood flow, oxygenation, and hemoglobin concentrations. To improve the accuracy of hemoglobin concentration measurement with an LED illumination source, an integral algorithm is proposed that accounts for the dependence of differential pathlength factors (DPF) on hemoglobin concentrations and the integral effect of both the emission spectrum of the light source and the spectrum response of the detector. The imaging system is validated by both phantom and in vivo experiments, including the arterial occlusion, and the detection of blood volume pulse (BVP) and blood flow pulse (BFP) signal in human subjects. The system helps in the exploration of macroscopic tissue hemodynamics.
Collapse
Affiliation(s)
- Chen Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiao Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiachi Hong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liangwei Meng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Weimin Cheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou 215125, China
| |
Collapse
|
17
|
Interobserver reliability of laser speckle contrast imaging in the assessment of burns. Burns 2019; 45:1325-1335. [DOI: 10.1016/j.burns.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/13/2018] [Accepted: 01/30/2019] [Indexed: 11/30/2022]
|
18
|
Heeman W, Steenbergen W, van Dam GM, Boerma EC. Clinical applications of laser speckle contrast imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31385481 PMCID: PMC6983474 DOI: 10.1117/1.jbo.24.8.080901] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/02/2019] [Indexed: 05/02/2023]
Abstract
When a biological tissue is illuminated with coherent light, an interference pattern will be formed at the detector, the so-called speckle pattern. Laser speckle contrast imaging (LSCI) is a technique based on the dynamic change in this backscattered light as a result of interaction with red blood cells. It can be used to visualize perfusion in various tissues and, even though this technique has been extensively described in the literature, the actual clinical implementation lags behind. We provide an overview of LSCI as a tool to image tissue perfusion. We present a brief introduction to the theory, review clinical studies from various medical fields, and discuss current limitations impeding clinical acceptance.
Collapse
Affiliation(s)
- Wido Heeman
- University of Groningen, Faculty Campus Fryslân, Leeuwarden, The Netherlands
- University Medical Centre Groningen, Department of Surgery, Optical Molecular Imaging Groningen, Groningen, The Netherlands
- LIMIS Development BV, Leeuwarden, The Netherlands
| | - Wiendelt Steenbergen
- University of Twente, Techmed Center, Faculty of Science and Technology, Biomedical Photonic Imaging Group, Enschede, The Netherlands
| | - Gooitzen M. van Dam
- University Medical Centre Groningen, Department of Surgery, Optical Molecular Imaging Groningen, Groningen, The Netherlands
| | - E. Christiaan Boerma
- Medical Centre Leeuwarden, Department of Intensive Care, Leeuwarden, The Netherlands
- Address all correspondence to E. Christiaan Boerma, E-mail:
| |
Collapse
|
19
|
Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int J Biol Macromol 2019; 138:854-865. [PMID: 31351963 DOI: 10.1016/j.ijbiomac.2019.07.155] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Skin wound dressings are commonly used to stimulate and enhance skin tissue repair. Even if wounds seem easy to repair for clinicians and to replicate in an in vitro set-up for scientists, chronic wounds remain currently an open challenge in skin tissue engineering for patients with complementary diseases. The seemingly simple process of skin healing hides a heterogenous sequence of events, specific timing, and high level of organization and coordination among the involved cell types. Taken together, all these aspects make wound healing a unique process, but we are not yet able to completely repair the chronic wounds or to reproduce them in vitro with high fidelity. This review highlights the main characteristics and properties of a natural polymer, which is widely used as biomaterial, namely collagen and of its denatured form, gelatin. Available wound dressings based on collagen/gelatin and proposed variants loaded with bioactive compounds derived from plants are presented. Applications of these composite biomaterials are discussed with emphasis on skin wound healing. A perspective on current issues is given in the light of future research. The emerging technologies support the development of innovative dressings based exclusively on natural constituents, either polymeric or bioactive compounds.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Bucharest, Romania
| |
Collapse
|
20
|
Laser-based Techniques for Microcirculatory Assessment in Orthopedics and Trauma Surgery: Past, Present, and Future. Ann Surg 2019; 270:1041-1048. [PMID: 30672807 DOI: 10.1097/sla.0000000000003139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: Microcirculatory integrity and proper function are the cornerstones to tissue nourishment and viability. In the clinical environment extended immobility, injuries, and inflammatory reactions demand local microcirculatory adaption to provide adequate supply. Assessment of endothelial adjustment capability and microcirculatory perfusion status, as direct or surrogate markers of disease, are therefore of uttermost interest to the treating physician. Given the simple, noninvasive, nonradiating nature of laser-based techniques for bedside or intraoperative microcirculatory perfusion assessment, this article's objective is to present a comprehensive overview of available techniques, their technological aspects, and current application. Advantages of individual methods are pointed out and compared with each other. The areas of medical utilization relevant to orthopedics and trauma surgery are exemplified and their available evidence elaborated. A particular focus is put on laser speckle contrast imaging, with its current and future influence on medical practice.
Collapse
|
21
|
Regan C, Hayakawa C, Choi B. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin. BIOMEDICAL OPTICS EXPRESS 2017; 8:5708-5723. [PMID: 29296499 PMCID: PMC5745114 DOI: 10.1364/boe.8.005708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 05/03/2023]
Abstract
Due to its simplicity and low cost, laser speckle imaging (LSI) has achieved widespread use in biomedical applications. However, interpretation of the blood-flow maps remains ambiguous, as LSI enables only limited visualization of vasculature below scattering layers such as the epidermis and skull. Here, we describe a computational model that enables flexible in-silico study of the impact of these factors on LSI measurements. The model uses Monte Carlo methods to simulate light and momentum transport in a heterogeneous tissue geometry. The virtual detectors of the model track several important characteristics of light. This model enables study of LSI aspects that may be difficult or unwieldy to address in an experimental setting, and enables detailed study of the fundamental origins of speckle contrast modulation in tissue-specific geometries. We applied the model to an in-depth exploration of the spectral dependence of speckle contrast signal in the skin, the effects of epidermal melanin content on LSI, and the depth-dependent origins of our signal. We found that LSI of transmitted light allows for a more homogeneous integration of the signal from the entire bulk of the tissue, whereas epi-illumination measurements of contrast are limited to a fraction of the light penetration depth. We quantified the spectral depth dependence of our contrast signal in the skin, and did not observe a statistically significant effect of epidermal melanin on speckle contrast. Finally, we corroborated these simulated results with experimental LSI measurements of flow beneath a thin absorbing layer. The results of this study suggest the use of LSI in the clinic to monitor perfusion in patients with different skin types, or inhomogeneous epidermal melanin distributions.
Collapse
Affiliation(s)
- Caitlin Regan
- Beckman Laser Institute, University of California-Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
- Department of Biomedical Engineering, University of California-Irvine, 3120 Natural Sciences II, Irvine, CA 92697, USA
| | - Carole Hayakawa
- Beckman Laser Institute, University of California-Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - Bernard Choi
- Beckman Laser Institute, University of California-Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
- Department of Biomedical Engineering, University of California-Irvine, 3120 Natural Sciences II, Irvine, CA 92697, USA
- Department of Surgery, University of California-Irvine, 333 City Boulevard West, Suite 1600, Orange, CA 92868, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, 2400 Engineering Hall, Irvine CA 92697, USA
| |
Collapse
|
22
|
Gibson ALF, Bennett DD, Taylor LJ. Improving the histologic characterization of burn depth. J Cutan Pathol 2017. [DOI: 10.1111/cup.12991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Angela L. F. Gibson
- Department of Surgery; University of Wisconsin School of Medicine and Public Health; Madison Wisconsin
| | - Daniel D. Bennett
- Department of Dermatology; University of Wisconsin School of Medicine and Public Health; Madison Wisconsin
| | - Lauren J. Taylor
- Department of Surgery; University of Wisconsin School of Medicine and Public Health; Madison Wisconsin
| |
Collapse
|
23
|
A simple and improved method to determine cell viability in burn-injured tissue. J Surg Res 2017; 215:83-87. [DOI: 10.1016/j.jss.2017.03.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/28/2017] [Accepted: 03/30/2017] [Indexed: 11/22/2022]
|
24
|
Ponticorvo A, Burmeister DM, Rowland R, Baldado M, Kennedy GT, Saager R, Bernal N, Choi B, Durkin AJ. Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI). Lasers Surg Med 2017; 49:293-304. [PMID: 28220508 DOI: 10.1002/lsm.22647] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OJECTIVES The current standard for diagnosis of burn severity and subsequent wound healing is through clinical examination, which is highly subjective. Several new technologies are shifting focus to burn care in an attempt to help quantify not only burn depth but also the progress of healing. While accurate early assessment of partial thickness burns is critical for dictating the course of treatment, the ability to quantitatively monitor wound status over time is critical for understanding treatment efficacy. SFDI and LSI are both non-invasive imaging modalities that have been shown to have great diagnostic value for burn severity, but have yet to be tested over the course of wound healing. METHODS In this study, a hairless rat model (n = 6, 300-450 g) was used with a four pronged comb to create four identical partial thickness burns (superficial n = 3 and deep n = 3) that were used to monitor wound healing over a 28 days period. Weekly biopsies were taken for histological analysis to verify wound progression. Both SFDI and LSI were performed weekly to track the evolution of hemodynamic (blood flow and oxygen saturation) and structural (reduced scattering coefficient) properties for the burns. RESULTS LSI showed significant changes in blood flow from baseline to 220% in superficial and 165% in deep burns by day 7. In superficial burns, blood flow returned to baseline levels by day 28, but not for deep burns where blood flow remained elevated. Smaller increases in blood flow were also observed in the surrounding tissue over the same time period. Oxygen saturation values measured with SFDI showed a progressive increase from baseline values of 66-74% in superficial burns and 72% in deep burns by day 28. Additionally, SFDI showed significant decreases in the reduced scattering coefficient shortly after the burns were created. The scattering coefficient progressively decreased in the wound area, but returned towards baseline conditions at the end of the 28 days period. Scattering changes in the surrounding tissue remained constant despite the presence of hemodynamic changes. CONCLUSIONS Here, we show that LSI and SFDI are capable of monitoring changes in hemodynamic and scattering properties in burn wounds over a 28 days period. These results highlight the potential insights that can be gained by using non-invasive imaging technologies to study wound healing. Further development of these technologies could be revolutionary for wound monitoring and studying the efficacy of different treatments. Lasers Surg. Med. 49:293-304, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adrien Ponticorvo
- Beckman Laser Institute Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92617
| | - David M Burmeister
- United States Army Institute of Surgical Research, 36950 Chambers Pass, Fort Sam Houston, Texas 78234
| | - Rebecca Rowland
- Beckman Laser Institute Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92617
| | - Melissa Baldado
- Beckman Laser Institute Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92617
| | - Gordon T Kennedy
- Beckman Laser Institute Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92617
| | - Rolf Saager
- Beckman Laser Institute Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92617
| | - Nicole Bernal
- Department of Surgery, UC Irvine Regional Burn Center, 333 City Boulevard West, Suite 705, Orange, California 92868
| | - Bernard Choi
- Beckman Laser Institute Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92617.,Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, Irvine, California 92697
| | - Anthony J Durkin
- Beckman Laser Institute Medical Clinic, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92617
| |
Collapse
|
25
|
Thatcher JE, Squiers JJ, Kanick SC, King DR, Lu Y, Wang Y, Mohan R, Sellke EW, DiMaio JM. Imaging Techniques for Clinical Burn Assessment with a Focus on Multispectral Imaging. Adv Wound Care (New Rochelle) 2016; 5:360-378. [PMID: 27602255 DOI: 10.1089/wound.2015.0684] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/16/2016] [Indexed: 11/13/2022] Open
Abstract
Significance: Burn assessments, including extent and severity, are some of the most critical diagnoses in burn care, and many recently developed imaging techniques may have the potential to improve the accuracy of these evaluations. Recent Advances: Optical devices, telemedicine, and high-frequency ultrasound are among the highlights in recent burn imaging advancements. We present another promising technology, multispectral imaging (MSI), which also has the potential to impact current medical practice in burn care, among a variety of other specialties. Critical Issues: At this time, it is still a matter of debate as to why there is no consensus on the use of technology to assist burn assessments in the United States. Fortunately, the availability of techniques does not appear to be a limitation. However, the selection of appropriate imaging technology to augment the provision of burn care can be difficult for clinicians to navigate. There are many technologies available, but a comprehensive review summarizing the tissue characteristics measured by each technology in light of aiding clinicians in selecting the proper device is missing. This would be especially valuable for the nonburn specialists who encounter burn injuries. Future Directions: The questions of when burn assessment devices are useful to the burn team, how the various imaging devices work, and where the various burn imaging technologies fit into the spectrum of burn care will continue to be addressed. Technologies that can image a large surface area quickly, such as thermography or laser speckle imaging, may be suitable for initial burn assessment and triage. In the setting of presurgical planning, ultrasound or optical microscopy techniques, including optical coherence tomography, may prove useful. MSI, which actually has origins in burn care, may ultimately meet a high number of requirements for burn assessment in routine clinical use.
Collapse
Affiliation(s)
| | - John J. Squiers
- Spectral MD, Inc., Dallas, Texas
- Baylor Research Institute, Baylor Scott & White Health, Dallas, Texas
| | | | | | - Yang Lu
- Spectral MD, Inc., Dallas, Texas
| | | | | | | | - J. Michael DiMaio
- Spectral MD, Inc., Dallas, Texas
- Baylor Research Institute, Baylor Scott & White Health, Dallas, Texas
| |
Collapse
|