1
|
Chouhan D, Akhilesh, Tiwari V. Focal Adhesion Kinase Inhibition Ameliorates Burn Injury-Induced Chronic Pain in Rats. Mol Neurobiol 2024:10.1007/s12035-024-04548-z. [PMID: 39460902 DOI: 10.1007/s12035-024-04548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Burn injury-induced pain (BIP) is a significant global health concern, affecting diverse populations including children, military veterans, and accident victims. Current pharmacotherapeutics for the management of BIP are associated with severe side effects including drug addiction, respiratory depression, sedation, and constipation posing significant barrier to their clinical utility. In the present study, we have investigated the potential role of focal adhesion kinase (p-FAK) for the very first time in BIP and elucidated the associated underlying mechanisms. Defactinib (DFT), a potent p-FAK inhibitor, administered at doses of 5, 10, and 20 mg/kg via intraperitoneal injection, demonstrates significant efficacy in reducing both evoked and spontaneous pain without causing addiction or other central nervous system toxicities. Burn injury triggers p-FAK-mediated phosphorylation of Erk1/2 and NR2B signaling in the DRG, resulting in heightened hypersensitivity through microglial activation, neuropeptide release, and elevated proinflammatory cytokines. Defactinib (DFT) counteracts these effects by reducing NR2B upregulation, lowering substance P levels, inhibiting microglial activation, and restoring IL-10 levels while leaving CGRP levels unchanged. These findings provide valuable insights into the pivotal role of p-FAK in regulating BIP and highlight the potential for developing novel therapeutics for burn injury-induced pain with minimal side effects.
Collapse
Affiliation(s)
- Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Pando M, Yang R, Dimitrov G, Chavez R, Garza T, Trevino AV, Gautam A, Stark TR, Hammamieh R, Clifford J, Sosanya NM. Identifying Stress-Exacerbated Thermal-Injury Induced MicroRNAs. THE JOURNAL OF PAIN 2023; 24:2294-2308. [PMID: 37468024 DOI: 10.1016/j.jpain.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Using a model of combat and operational stress reaction (COSR), our lab recently showed that exposure to an unpredictable combat stress (UPCS) procedure prior to a thermal injury increases pain sensitivity in male rats. Additionally, our lab has recently shown that circulating extracellular vesicle-microRNAs (EV-miRNAs), which normally function to suppress inflammation, were downregulated in a male rat model of neuropathic pain. In this current study, male and female rats exposed to UPCS, followed by thermal injury, were evaluated for changes in circulating EV-miRNAs. Adult female and male Sprague Dawley rats were exposed to a UPCS procedure for either 2 or 4 weeks. Groups consisted of the following: nonstress (NS), stress (S), NS + thermal injury (TI), and S + TI. Mechanical sensitivity was measured, and plasma was collected at baseline, throughout the UPCS exposure, and post-thermal injury. EV-miRNA isolation was performed, followed by small RNA sequencing and subsequent data analysis. UPCS exposure alone resulted in mechanical allodynia in both male and female rats at specific time points. Thermal-injury induction occurring at peak UPCS resulted in increased mechanical allodynia in the injured hind paw compared to thermal injury alone. Differential expression of the EV-miRNAs was observed between the NS and S groups as well as between NS + TI and S + TI groups. Consistent differences in EV-miRNAs are detectable in both COSR as well as during the development of mechanical sensitivity and potentially serve as key regulators, biomarkers, and targets in the treatment of COSR and thermal-injury induced mechanical sensitivity. PERSPECTIVE: This article presents the effects of unpredictable combat stress and thermal injury on EV-contained microRNAs in an animal model. These same mechanisms may exist in clinical patients and could be future prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Miryam Pando
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Ruoting Yang
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - George Dimitrov
- Medical Readiness Systems Biology Branch, The Geneva Foundation, Tacoma, Washington
| | - Roger Chavez
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Thomas Garza
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Alex V Trevino
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Aarti Gautam
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Thomas R Stark
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Rasha Hammamieh
- Medical Readiness Systems Biology Branch, The Geneva Foundation, Tacoma, Washington
| | - John Clifford
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| | - Natasha M Sosanya
- US Army Institute of Surgical Research (USAISR), JBSA Ft Sam Houston, San Antonio, Texas
| |
Collapse
|
3
|
Beaudoin FL, Gaither R, DeLomba WC, McLean SA. Tolerability and efficacy of duloxetine for the prevention of persistent musculoskeletal pain after trauma and injury: a pilot three-group randomized controlled trial. Pain 2023; 164:855-863. [PMID: 36375173 PMCID: PMC10014491 DOI: 10.1097/j.pain.0000000000002782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
Abstract
ABSTRACT This study investigated the tolerability and preliminary efficacy of duloxetine as an alternative nonopioid therapeutic option for the prevention of persistent musculoskeletal pain (MSP) among adults presenting to the emergency department with acute MSP after trauma or injury. In this randomized, double-blind, placebo-controlled study, eligible participants (n = 78) were randomized to 2 weeks of a daily dose of one of the following: placebo (n = 27), 30 mg duloxetine (n = 24), or 60 mg duloxetine (n = 27). Tolerability, the primary outcome, was measured by dropout rate and adverse effects. Secondary outcomes assessed drug efficacy as measured by (1) the proportion of participants with moderate to severe pain (numerical rating scale ≥ 4) at 6 weeks (pain persistence); and (2) average pain by group over the six-week study period. We also explored treatment effects by type of trauma (motor vehicle collision [MVC] vs non-MVC). In both intervention groups, duloxetine was well tolerated and there were no serious adverse events. There was a statistically significant difference in pain over time for the 60 mg vs placebo group ( P = 0.03) but not for the 30 mg vs placebo group ( P = 0.51). In both types of analyses, the size of the effect of duloxetine was larger in MVC vs non-MVC injury. Consistent with the role of stress systems in the development of chronic pain after traumatic stress, our data indicate duloxetine may be a treatment option for reducing the transition from acute to persistent MSP. Larger randomized controlled trials are needed to confirm these promising results.
Collapse
Affiliation(s)
- Francesca L. Beaudoin
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States
- Department of Emergency Medicine, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Rachel Gaither
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States
| | - Weston C. DeLomba
- Department of Emergency Medicine, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Samuel A. McLean
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Strain MM, Tongkhuya S, Wienandt N, Alsadoon F, Chavez R, Daniels J, Garza T, Trevino AV, Wells K, Stark T, Clifford J, Sosanya NM. Exploring combat stress exposure effects on burn pain in a female rodent model. BMC Neurosci 2022; 23:73. [PMID: 36474149 PMCID: PMC9724288 DOI: 10.1186/s12868-022-00759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/27/2022] [Indexed: 12/12/2022] Open
Abstract
In the military, constant physiological and psychological stress encountered by Soldiers can lead to development of the combat and operational stress reaction (COSR), which can effect pain management. Similar effects are seen in other populations subjected to high levels of stress. Using a model of COSR, our lab recently showed that four weeks of stress prior to an injury increases pain sensitivity in male rats. With the roles of women in the military expanding and recent studies indicating sex differences in stress and pain processing, this study sought to investigate how different amounts of prior stress exposure affects thermal injury-induced mechanosensitivity in a female rat model of COSR. Adult female Sprague Dawley rats were exposed to the unpredictable combat stress (UPCS) procedure for either 2 or 4 weeks. The UPCS procedure included exposure to one stressor each day for four days. The stressors include: (1) sound stress for 30 min, (2) restraint stress for 4 h, (3) cold stress for 4 h, and (4) forced swim stress for 15 min. The order of stressors was randomized weekly. Mechanical and thermal sensitivity was tested twice weekly. After the UPCS procedure, a sub-set of rats received a thermal injury while under anesthesia. The development of mechanical allodynia and thermal hyperalgesia was examined for 14 days post-burn. UPCS exposure increased mechanosensitivity after two weeks. Interestingly, with more stress exposure, females seemed to habituate to the stress, causing the stress-induced changes in mechanosensitivity to decrease by week three of UPCS. If thermal injury induction occurred during peak stress-induced mechanosensitivity, after two weeks, this resulted in increased mechanical allodynia in the injured hind paw compared to thermal injury alone. This data indicates a susceptibility to increased nociceptive sensitization when injury is sustained at peak stress reactivity. Additionally, this data indicates a sex difference in the timing of peak stress. Post-mortem examination of the prefrontal cortex (PFC) showed altered expression of p-TrkB in 4-week stressed animals given a thermal injury, suggesting a compensatory mechanism. Future work will examine treatment options for preventing stress-induced pain to maintain the effectiveness and readiness of the Warfighter.
Collapse
Affiliation(s)
- Misty M. Strain
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Sirima Tongkhuya
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Nathan Wienandt
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Farah Alsadoon
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Roger Chavez
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Jamar Daniels
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Thomas Garza
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Alex V. Trevino
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Kenney Wells
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Thomas Stark
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - John Clifford
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| | - Natasha M. Sosanya
- grid.420328.f0000 0001 2110 0308Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX 78234-4504 USA
| |
Collapse
|
5
|
Asghar A, Aamir MN, Sheikh FA, Ahmad N, Alotaibi NF, Bukhari SNA. Preparation, Characterization of Pregabalin and Withania coagulans Extract-Loaded Topical Gel and Their Comparative Effect on Burn Injury. Gels 2022; 8:gels8070402. [PMID: 35877487 PMCID: PMC9318109 DOI: 10.3390/gels8070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
The current study depicts the comparative effects of nanogel using Withania coagulans extract, pregabalin alone, and a co-combination gel. The gels prepared were then analyzed for conductivity, viscosity, spread ability, globule size, zeta potential, polydispersity index, and TEM. The globule size of the co-combination gel, determined by zeta sizer, was found to be (329 ± 0.573 nm). FTIR analysis confirms the successful development of gel, without any interaction. Drug distribution at the molecular level was confirmed by XRD. DSC revealed no bigger thermal changes. TEM images revealed spherical molecules with sizes of 200 nm for the co-combination gel. In vivo studies were carried out by infliction of third degree burn wounds on rat skin, and they confirmed that pregabalin and Withania coagulans heals the wound more effectively, with a wound contraction rate of 89.95%, compared to remaining groups. Anti-inflammatory activity (IL-6 and TNF-α), determined by the ELISA technique, shows that the co-combination gel group reduces the maximum inflammation with TNF-α value (132.2 pg/mL), compared to the control (140.22 pg/mL). Similarly, the IL-6 value was found to be (78 pg/mL) for the co-combination gel and (81 pg/mL) in the case of the control. Histopathologically, the co-combination gel heals wounds more quickly, compared to individual gel. These outcomes depict that a co-combination gel using plant extracts and drugs can be successfully used to treat burn injury.
Collapse
Affiliation(s)
- Anam Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: or
| | | | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Nasser F. Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
6
|
Ali KA, El-Naa MM, Bakr AF, Mahmoud MY, Abdelgawad EM, Matoock MY. The dual gastro- and neuroprotective effects of curcumin loaded chitosan nanoparticles against cold restraint stress in rats. Pharmacotherapy 2022; 148:112778. [PMID: 35272135 DOI: 10.1016/j.biopha.2022.112778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 12/30/2022]
Abstract
Stress is a condition affecting different body systems. Curcumin (CUR) is a natural compound that has various pharmacological benefits. However, its poor oral bioavailability limits its therapeutic value. This study aimed to formulating curcumin loaded chitosan nanoparticles (CS.CUR.NPs) and investigate its gastroprotective and neuroprotective effects in rats subjected to cold restraint stress (CRS), in reference to conventional oral CUR preparation, and explore its underlying mechanism. Treated groups received either CUR or CS.CUR.NPs (100 mg∕kg) orally for 14 days before exposure to CRS. CRS elicited marked behavioral changes and gastric ulcer accompanied by histopathological abnormalities of the brain and stomach along with elevation of pain score. CUR and CS.CUR.NPs improved stress-induced gastric ulcer, cognitive performance, and pain sensation. Mechanistically, CRS disrupts oxidative and inflammatory status of the brain as manifested by high malondialdehyde and IL-6 and low total antioxidant capacity and IL-10, along with high C-reactive protein level. CRS decreased nuclear factor erythroid 2-related factor2 (Nrf2) and increased nuclear factor-kappa B (NF-κB) expressions. Furthermore, brain levels of unphosphorylated signal transducer and activator of transcription3 (U-STAT3) and glial fibrillary acidic protein (GFAP) were upregulated with stress. CUR and CS.CUR.NPs provided beneficial effects against harmful consequences resulting from stress with superior beneficial effects reported with CS.CUR.NPs. In conclusion, these findings shed light on the neuroprotective effect of CUR and CS.CUR.NPs against stress-induced neurobehavioral and neurochemical deficits and protection against stress-associated gastric ulcer. Moreover, we explored a potential crosslink between neuroinflammation, U-STAT3, NF-κB, and GFAP in brain dysfunction resulted from CRS.
Collapse
Affiliation(s)
- Kholoud A Ali
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Mona M El-Naa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Essam M Abdelgawad
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohammed Y Matoock
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
7
|
Wu PY, Menta B, Visk A, Ryals JM, Christianson JA, Wright DE, Chadwick AL. The impact of foot shock-induced stress on pain-related behavior associated with burn injury. Burns 2021; 47:1896-1907. [PMID: 33958242 PMCID: PMC8526636 DOI: 10.1016/j.burns.2021.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022]
Abstract
Acute pain is prevalent following burn injury and can often transition to chronic pain. Prolonged acute pain is an important risk factor for chronic pain and there is little preclinical research to address this problem. Using a mouse model of second-degree burn, we investigated whether pre-existing stress influences pain(sensitivity) after a burn injury. We introduced a contribution of stress in two different ways: (1) the use of foot-shock as a pre-injury stressor or (2) the use of A/J mice to represent higher pre-existing stress compared to C57Bl/6 mice. C57Bl/6 and A/J mice were exposed to repeated mild foot shock to induce stress for 10 continuous days and mice underwent either burn injury or sham burn injury of the plantar surface of the right hind paw. Assessments of mechanical and thermal sensitivities of the injured and uninjured paw were conducted during the shock protocol and at intervals up to 82-day post-burn injury. In both strains of mice that underwent burn injury, thermal hypersensitivity and mechanical allodynia appeared rapidly in the ipsilateral paw. Mice that were stressed took much longer to recover their hind paw mechanical thresholds to baseline compared to non-stressed mice in both burn and non-burn groups. Analysis of the two mouse strains revealed that the recovery of mechanical thresholds in A/J mice which display higher levels of baseline anxiety was shorter than C57Bl/6 mice. No differences were observed regarding thermal sensitivities between strains. Our results support the view that stress exposure prior to burn injury affects mechanical and thermal thresholds and may be relevant to as a risk factor for the transition from acute to chronic pain. Finally, genetic differences may play a key role in modality-specific recovery following burn injury.
Collapse
Affiliation(s)
- Pau Yen Wu
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Blaise Menta
- Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alexander Visk
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Janelle M Ryals
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Douglas E Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Andrea L Chadwick
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
8
|
Hao D, Nourbakhsh M. Recent Advances in Experimental Burn Models. BIOLOGY 2021; 10:526. [PMID: 34204763 PMCID: PMC8231482 DOI: 10.3390/biology10060526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Experimental burn models are essential tools for simulating human burn injuries and exploring the consequences of burns or new treatment strategies. Unlike clinical studies, experimental models allow a direct comparison of different aspects of burns under controlled conditions and thereby provide relevant information on the molecular mechanisms of tissue damage and wound healing, as well as potential therapeutic targets. While most comparative burn studies are performed in animal models, a few human or humanized models have been successfully employed to study local events at the injury site. However, the consensus between animal and human studies regarding the cellular and molecular nature of systemic inflammatory response syndrome (SIRS), scarring, and neovascularization is limited. The many interspecies differences prohibit the outcomes of animal model studies from being fully translated into the human system. Thus, the development of more targeted, individualized treatments for burn injuries remains a major challenge in this field. This review focuses on the latest progress in experimental burn models achieved since 2016, and summarizes the outcomes regarding potential methodological improvements, assessments of molecular responses to injury, and therapeutic advances.
Collapse
Affiliation(s)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
9
|
Mendes-Gomes J, Paschoalin-Maurin T, Donaldson LF, Lumb BM, Blanchard DC, Coimbra NC. Repeated exposure of naïve and peripheral nerve-injured mice to a snake as an experimental model of post-traumatic stress disorder and its co-morbidity with neuropathic pain. Brain Res 2020; 1744:146907. [PMID: 32474017 DOI: 10.1016/j.brainres.2020.146907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
Confrontation of rodents by natural predators provides a number of advantages as a model for traumatic or stressful experience. Using this approach, one of the aims of this study was to investigate a model for the study of post-traumatic stress disorder (PTSD)-related behaviour in mice. Moreover, because PTSD can facilitate the establishment of chronic pain (CP), and in the same way, patients with CP have an increased tendency to develop PTSD when exposed to a traumatic event, our second aim was to analyse whether this comorbidity can be verified in the new paradigm. C57BL/6 male mice underwent chronic constriction injury of the sciatic nerve (CCI), a model of neuropathic CP, or not (sham groups) and were submitted to different threatening situations. Threatened mice exhibited enhanced defensive behaviours, as well as significantly enhanced risk assessment and escape behaviours during context reexposure. Previous snake exposure reduced open-arm time in the elevated plus-maze test, suggesting an increase in anxiety levels. Sham mice showed fear-induced antinociception immediately after a second exposure to the snake, but 1 week later, they exhibited allodynia, suggesting that multiple exposures to the snake led to increased nociceptive responses. Moreover, after reexposure to the aversive environment, allodynia was maintained. CCI alone produced intense allodynia, which was unaltered by exposure to either the snake stimuli or reexposure to the experimental context. Together, these results specifically parallel the behavioural symptoms of PTSD, suggesting that the snake/exuvia/reexposure procedure may constitute a useful animal model to study PTSD.
Collapse
Affiliation(s)
- Joyce Mendes-Gomes
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; Dracena Medical School (UNIFADRA-FUNDEC), Rua Bahia, 332, Dracena, 17900-000 São Paulo, Brazil
| | - Tatiana Paschoalin-Maurin
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil
| | - Lucy F Donaldson
- Arthritis Research UK Pain Centre and School of Life Sciences, QMC, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Bridget M Lumb
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - D Caroline Blanchard
- Pacific Biosciences Research Centre, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Avenida do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; University of São Paulo Neurobiology of Emotions Research Centre (NAP-USP-NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil.
| |
Collapse
|
10
|
Valproate reverses stress-induced somatic hyperalgesia and visceral hypersensitivity by up-regulating spinal 5-HT 2C receptor expression in female rats. Neuropharmacology 2019; 165:107926. [PMID: 31883927 DOI: 10.1016/j.neuropharm.2019.107926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Sodium valproate (VPA) has analgesic effects in clinical and experimental studies, but the mechanisms are still unclear. The present study examined the effects of VPA on stress-induced somatic hyperalgesia and visceral hypersensitivity and the role of 5-HT2C receptors in the spinal cord. Repeated 3 day forced swim (FS) significantly reduced the thermal withdrawal latency and mechanical withdrawal threshold, and increased the magnitude of the visceromotor response to colorectal distention compared to the baseline values in rats. The somatic hyperalgesia and visceral hypersensitivity were accompanied by significant down-regulation of 5-HT2C receptor expression in the L4-L5 and L6-S1 dorsal spinal cord. Intraperitoneal administration of VPA (300 mg/kg) before each FS and 1 day post FS prevented the development of somatic hyperalgesia and visceral hypersensitivity induced by FS stress, as well as down-regulation of 5-HT2C receptors in the spinal cord. The reversal of somatic hyperalgesia and visceral hypersensitivity by VPA in FS rats was blocked by intrathecal administration of the selective 5-HT2C receptor antagonist RS-102221 (30 μg/10 μL) 30 min after each VPA injection. The results suggest that VPA attenuates FS-induced somatic hyperalgesia and visceral hypersensitivity by restoring down-regulated function of 5-HT2C receptors in the spinal cord.
Collapse
|
11
|
The emergence of animal models of chronic pain and logistical and methodological issues concerning their use. J Neural Transm (Vienna) 2019; 127:393-406. [DOI: 10.1007/s00702-019-02103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
|
12
|
Affiliation(s)
- J A Jeevendra Martyn
- From the Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School - all in Boston
| | - Jianren Mao
- From the Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School - all in Boston
| | - Edward A Bittner
- From the Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School - all in Boston
| |
Collapse
|
13
|
Salas MM, Clifford JL, Hayden JR, Iadarola MJ, Averitt DL. Local Resiniferatoxin Induces Long-Lasting Analgesia in a Rat Model of Full Thickness Thermal Injury. PAIN MEDICINE 2018; 18:2453-2465. [PMID: 27794548 DOI: 10.1093/pm/pnw260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective Opioid-based analgesics are a major component of the lengthy pain management of burn patients, including military service members, but are problematic due to central nervous system-mediated side effects. Peripheral analgesia via targeted ablation of nociceptive nerve endings that express the transient receptor potential vanilloid channel 1 (TRPV1) may provide an improved approach. We hypothesized that local injection of the TRPV1 agonist resiniferatoxin (RTX) would produce long-lasting analgesia in a rat model of pain associated with burn injury. Methods Baseline sensitivities to thermal and mechanical stimuli were measured in male and female Sprague-Dawley rats. Under anesthesia, a 100 °C metal probe was placed on the right hind paw for 30 seconds, and sensitivity was reassessed 72 hours following injury. Rats received RTX (0.25 μg/100 μL; ipl) into the injured hind paw, and sensitivity was reassessed across three weeks. Tissues were collected from a separate group of rats at 24 hours and/or one week post-RTX for pathological analyses of the injured hind paw, dorsal spinal cord c-Fos, and primary afferent neuropeptide immunoreactivity. Results Local RTX reversed burn pain behaviors within 24 hours, which lasted through recovery at three weeks. At one week following RTX, decreased c-Fos and primary afferent neuropeptide immunoreactivities were observed in the dorsal horn, while plantar burn pathology was unaltered. Conclusions These results indicate that local RTX induces long-lasting analgesia in a rat model of pain associated with burn. While opioids are undesirable in trauma patients due to side effects, RTX may provide valuable long-term, nonopioid analgesia for burn patients.
Collapse
Affiliation(s)
- Margaux M Salas
- Pain Management Research Area, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - John L Clifford
- Pain Management Research Area, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Jessica R Hayden
- Pain Management Research Area, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Dayna L Averitt
- Department of Biology, Texas Woman's University, Denton, Texas, USA
| |
Collapse
|
14
|
Clifford JL, Christy RJ, Cheppudira BP. Antinociceptive effects of pluronic lecithin organo (PLO)-opioid gels in rats with thermal injury. Burns 2017; 43:1709-1716. [DOI: 10.1016/j.burns.2017.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 02/04/2023]
|
15
|
Sosanya NM, Trevino AV, Chavez RL, Christy RJ, Cheppudira BP. Sound-stress-induced altered nociceptive behaviors are associated with increased spinal CRFR2 gene expression in a rat model of burn injury. J Pain Res 2017; 10:2135-2145. [PMID: 28979159 PMCID: PMC5589110 DOI: 10.2147/jpr.s144055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sound stress (SS) elicits behavioral changes, including pain behaviors. However, the neuronal mechanisms underlying SS-induced pain behaviors remain to be explored. The current study examined the effects of SS on nociceptive behaviors and changes in expression of the spinal corticotropin-releasing factor (CRF) system in male Sprague Dawley rats with and without thermal pain. We also studied the effects of SS on plasma corticosterone and fecal output. Rats were exposed to 3 days of SS protocol (n = 12/group). Changes in nociceptive behaviors were assessed using thermal and mechanical pain tests. Following the induction of SS, a subgroup of rats (n = 6/group) was inflicted with thermal injury and on day 14 postburn nociceptive behaviors were reassessed. Spinal CRF receptor mRNA expression was analyzed by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). In addition, plasma corticosterone and spinal CRF concentrations were quantified using enzyme-linked immunosorbent assay (ELISA). Increased defecation was observed in SS rats. SS produced transient mechanical allodynia in naive rats, whereas it exacerbated thermal pain in thermally injured rats. Spinal CRFR2 mRNA expression was unaffected by stress or thermal injury alone, but their combined effect significantly increased its expression. SS had no effect on plasma corticosterone and spinal CRF protein in postburn rats. To conclude, SS is capable of exacerbating postburn thermal pain, which is linked to increased CRFR2 gene expression in the spinal cord. Future studies have to delineate whether attenuation of CRFR2 signaling at the spinal level prevents stress-induced exacerbation of burn pain.
Collapse
Affiliation(s)
- Natasha M Sosanya
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Alex V Trevino
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Roger L Chavez
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Robert J Christy
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Bopaiah P Cheppudira
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| |
Collapse
|