1
|
Scheau C, Didilescu AC, Caruntu C. Innovative Biomaterials: The Cornerstone of Next-Generation Medical Solutions. J Funct Biomater 2024; 15:218. [PMID: 39194656 DOI: 10.3390/jfb15080218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Over the past decade, 3D printing has gained traction in the medical field, and research has started to concentrate on discovering and developing new printing techniques and novel materials usable in this complex field [...].
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dentistry, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
2
|
Xie M, Liao M, Chen S, Zhu D, Zeng Q, Wang P, Su C, Lian R, Chen J, Zhang J. Cell spray printing combined with Lycium barbarum glycopeptide promotes repair of corneal epithelial injury. Exp Eye Res 2024; 244:109928. [PMID: 38750781 DOI: 10.1016/j.exer.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The corneal epithelium, located as the outermost layer of the cornea, is inherently susceptible to injuries that may lead to corneal opacities and compromise visual acuity. Rapid restoration of corneal epithelial injury is crucial for maintaining the transparency and integrity of the cornea. Cell spray treatment emerges as an innovative and effective approach in the field of regenerative medicine. In our study, a cell spray printing platform was established, and the optimal printing parameters were determined to be a printing air pressure of 5 PSI (34.47 kPa) and a liquid flow rate of 30 ml/h. Under these conditions, the viability and phenotype of spray-printed corneal epithelial cells were preserved. Moreover, Lycium barbarum glycopeptide (LBGP), a glycoprotein purified from wolfberry, enhanced proliferation while simultaneously inhibiting apoptosis of the spray-printed corneal epithelial cells. We found that the combination of cell spray printing and LBGP facilitated the rapid construction of multilayered cell sheets on flat and curved collagen membranes in vitro. Furthermore, the combined cell spray printing and LBGP accelerated the recovery of the rat corneal epithelium in the mechanical injury model. Our findings offer a therapeutic avenue for addressing corneal epithelial injuries and regeneration.
Collapse
Affiliation(s)
- Mengyuan Xie
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Meizhong Liao
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Sihui Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Deliang Zhu
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qiaolang Zeng
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570000, China
| | - Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510623, China
| | - Caiying Su
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Ruiling Lian
- Aier Eye Institute, Changsha, Hunan, 410015, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Aier Eye Institute, Changsha, Hunan, 410015, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Jun Zhang
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Engineering Technology Research Center on Visible Light Communication, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Heuer M, Stiti M, Eras V, Scholz J, Ahmed N, Berrocal E, Brune JC. High-Speed Fluorescence Imaging Corroborates Biological Data on the Influence of Different Nozzle Types on Cell Spray Viability and Formation. J Funct Biomater 2024; 15:126. [PMID: 38786637 PMCID: PMC11122036 DOI: 10.3390/jfb15050126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Treating severe dermal disruptions often presents significant challenges. Recent advancements have explored biological cell sprays as a promising treatment, but their success hinges on efficient cell delivery and complete wound coverage. This requires a good spray distribution with a small droplet size, high particle number, and ample surface coverage. The type of nozzle used with the spray device can impact these parameters. To evaluate the influence of different nozzles on spray characteristics, we compared air-assisted and unassisted nozzles. The unassisted nozzle displayed small particle size, high particle number, good overall coverage, high cell viability, preserved cell metabolic activity, and low cytotoxicity. Air-assisted nozzles did not perform well regarding cell viability and metabolic activity. Flow visualization analysis comparing two different unassisted nozzles using high-speed imaging (100 kHz frame rate) revealed a tulip-shaped spray pattern, indicating optimal spray distribution. High-speed imaging showed differences between the unassisted nozzles. One unassisted nozzle displayed a bi-modal distribution of the droplet diameter while the other unassisted nozzle displayed a mono-modal distribution. These findings demonstrate the critical role of nozzle selection in successful cell delivery. A high-quality, certified nozzle manufactured for human application omits the need for an air-assisted nozzle and provides a simple system to use with similar or better performance characteristics than those of an air-assisted system.
Collapse
Affiliation(s)
- Miriam Heuer
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555 Berlin, Germany
| | - Mehdi Stiti
- Division of Combustion Physics, Department of Physics, Lund University, P.O. Box 118, 22100 Lund, Sweden
- Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, Université de Toulouse, 31400 Toulouse, France
| | - Volker Eras
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555 Berlin, Germany
| | - Julia Scholz
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555 Berlin, Germany
| | - Norus Ahmed
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555 Berlin, Germany
| | - Edouard Berrocal
- Division of Combustion Physics, Department of Physics, Lund University, P.O. Box 118, 22100 Lund, Sweden
| | - Jan C Brune
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555 Berlin, Germany
| |
Collapse
|
4
|
Peake M, Dunnill C, Ibraheem K, Smith A, Clarke DJ, Georgopoulos NT. A novel method for the establishment of autologous skin cell suspensions: characterisation of cellular sub-populations, epidermal stem cell content and wound response-enhancing biological properties. Front Bioeng Biotechnol 2024; 12:1386896. [PMID: 38646012 PMCID: PMC11026634 DOI: 10.3389/fbioe.2024.1386896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction: Autologous cell suspension (ACS)-based therapy represents a highly promising approach for burns and chronic wounds. However, existing technologies have not achieved the desired clinical success due to several limitations. To overcome practical and cost-associated obstacles of existing ACS methods, we have established a novel methodology for rapid, enzymatic disaggregation of human skin cells and their isolation using a procedure that requires no specialist laboratory instrumentation and is performed at room temperature. Methods: Cells were isolated using enzymatic disaggregation of split-thickness human skin followed by several filtration steps for isolation of cell populations, and cell viability was determined. Individual population recovery was confirmed in appropriate culture medium types, and the presence of epidermal stem cells (EpSCs) within keratinocyte sub-populations was defined by flow cytometry via detection of CD49 and CD71. Positive mediators of wound healing secreted by ACS-derived cultures established on a collagen-based wound-bed mimic were detected by proteome arrays and quantified by ELISA, and the role of such mediators was determined by cell proliferation assays. The effect of ACS-derived conditioned-medium on myofibroblasts was investigated using an in-vitro model of myofibroblast differentiation via detection of α-SMA using immunoblotting and immunofluorescence microscopy. Results: Our methodology permitted efficient recovery of keratinocytes, fibroblasts and melanocytes, which remained viable upon long-term culture. ACS-derivatives comprised sub-populations with the CD49-high/CD71-low expression profile known to demarcate EpSCs. Via secretion of mitogenic factors and wound healing-enhancing mediators, the ACS secretome accelerated keratinocyte proliferation and markedly curtailed cytodifferentiation of myofibroblasts, the latter being key mediators of fibrosis and scarring. Discussion: The systematic characterisation of the cell types within our ACS isolates provided evidence for their superior cell viability and the presence of EpSCs that are critical drivers of wound healing. We defined the biological properties of ACS-derived keratinocytes, which include ability to secrete positive mediators of wound healing as well as suppression of myofibroblast cytodifferentiation. Thus, our study provides several lines of evidence that the established ACS isolates comprise highly-viable cell populations which can physically support wound healing and possess biological properties that have the potential to enhance not only the speed but also the quality of wound healing.
Collapse
Affiliation(s)
- Michael Peake
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Chris Dunnill
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Khalidah Ibraheem
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Adrian Smith
- Department of General Surgery, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, United Kingdom
| | - Douglas J. Clarke
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Nikolaos T. Georgopoulos
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
5
|
Zhang M, Xing J, Zhong Y, Zhang T, Liu X, Xing D. Advanced function, design and application of skin substitutes for skin regeneration. Mater Today Bio 2024; 24:100918. [PMID: 38223459 PMCID: PMC10784320 DOI: 10.1016/j.mtbio.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
The development of skin substitutes aims to replace, mimic, or improve the functions of human skin, regenerate damaged skin tissue, and replace or enhance skin function. This includes artificial skin, scaffolds or devices designed for treatment, imitation, or improvement of skin function in wounds and injuries. Therefore, tremendous efforts have been made to develop functional skin substitutes. However, there is still few reports systematically discuss the relationship between the advanced function and design requirements. In this paper, we review the classification, functions, and design requirements of artificial skin or skin substitutes. Different manufacturing strategies for skin substitutes such as hydrogels, 3D/4D printing, electrospinning, microfluidics are summarized. This review also introduces currently available skin substitutes in clinical trials and on the market and the related regulatory requirements. Finally, the prospects and challenges of skin substitutes in the field of tissue engineering are discussed.
Collapse
Affiliation(s)
- Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Kowalski G, Leppert W, Domagalska M, Grochowicka M, Teżyk A, Słowiński K, Bienert A, Szkutnik-Fiedler D, Wieczorowska-Tobis K. Analgesic Efficacy of Oxycodone in Postoperative Dressings after Surgical Treatment of Burn Wounds: A Randomised Controlled Trial. J Clin Med 2024; 13:784. [PMID: 38337478 PMCID: PMC10856020 DOI: 10.3390/jcm13030784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION This study aimed to assess the analgesic efficacy of oxycodone at doses of 10 mg and 20 mg in dressings after surgery of burn wounds. MATERIAL AND METHODS Twenty adult patients who underwent surgical treatment of third-degree burn wounds under general anaesthesia were included. Burn wounds were treated with dressings, to which oxycodone was added at 20 mg in Group 1 and 10 mg in Group 2. After the surgery, plasma oxycodone and noroxycodone concentrations were assayed, and pain intensity was assessed with Numerical Rating Scale (NRS). RESULTS In Group 1, no patient reported pain; in Group 2, four patients reported pain. The pain intensity, according to NRS, was 1-8. Plasma concentration of oxycodone in the blood serum was in the range of 1.24-3.15 ng/mL and 1.09-1.28 ng/mL in Group 1 and Group 2, respectively. Noroxycodone was not detected in the plasma. Adverse effects were not observed in any of the treated patients. CONCLUSIONS Oxycodone in dressings provides patients with adequate and safe analgesia.
Collapse
Affiliation(s)
- Grzegorz Kowalski
- Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Pozan, Poland; (G.K.); (M.G.); (K.W.-T.)
- Department of Anesthesiology, Józef Struś Multiprofile Municipal Hospital, 61-701 Poznań, Poland
| | - Wojciech Leppert
- Department of Palliative Medicine, Institute of Medical Sciences Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
- University Clinical Hospital in Poznań, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Małgorzata Domagalska
- Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Pozan, Poland; (G.K.); (M.G.); (K.W.-T.)
| | - Monika Grochowicka
- Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Pozan, Poland; (G.K.); (M.G.); (K.W.-T.)
| | - Artur Teżyk
- Department of Forensic Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Krzysztof Słowiński
- Department of Trauma, Burns and Plastic Surgery, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Agnieszka Bienert
- Chair and Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (A.B.); (D.S.-F.)
| | - Danuta Szkutnik-Fiedler
- Chair and Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (A.B.); (D.S.-F.)
| | - Katarzyna Wieczorowska-Tobis
- Department of Palliative Medicine, Poznan University of Medical Sciences, 61-701 Pozan, Poland; (G.K.); (M.G.); (K.W.-T.)
| |
Collapse
|
7
|
Yan X, Wang C, Ma Y, Wang Y, Song F, Zhong J, Wu X. Development of air-assisted atomization device for the delivery of cells in viscous biological ink prepared with sodium alginate. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:044101. [PMID: 38081259 DOI: 10.1063/5.0102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/19/2023] [Indexed: 12/18/2023]
Abstract
Skin wounds, especially large-area skin trauma, would bring great pain and even fatal risk to patients. In recent years, local autologous cell transplantation has shown great potential for wound healing and re-epithelialization. However, when the cell suspension prepared with normal saline is delivered to the wound, due to its low viscosity, it is easy to form big drops in the deposition and lose them from the wound bed, resulting in cell loss and uneven coverage. Here, we developed a novel air-assisted atomization device (AAAD). Under proper atomization parameters, 1% (w/v) sodium alginate (SA) solution carrier could be sprayed uniformly. Compared with normal saline, the run-off of the SA on the surface of porcine skin was greatly reduced. In theory, the spray height of AAAD could be set to achieve the adjustment of a large spray area of 1-12 cm2. In the measurement of droplet velocity and HaCaT cell viability, the spray height of AAAD would affect the droplet settling velocity and then the cell delivery survival rate (CSR). Compared with the spray height of 50 mm, the CSR of 100 mm was significantly higher and could reach 91.09% ± 1.82% (92.82% ± 2.15% in control). For bio-ink prepared with 1% (w/v) SA, the viability remained the same during the 72-h incubation. Overall, the novel AAAD uniformly atomized bio-ink with high viscosity and maintained the viability and proliferation rate during the delivery of living cells. Therefore, AAAD has great potential in cell transplantation therapy, especially for large-area or irregular skin wounds.
Collapse
Affiliation(s)
- Xintao Yan
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Ce Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Yuting Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Yao Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Feifei Song
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Jinfeng Zhong
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Xiaodong Wu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| |
Collapse
|
8
|
Advances in spray products for skin regeneration. Bioact Mater 2022; 16:187-203. [PMID: 35386328 PMCID: PMC8965724 DOI: 10.1016/j.bioactmat.2022.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
To date, skin wounds are still an issue for healthcare professionals. Although numerous approaches have been developed over the years for skin regeneration, recent advances in regenerative medicine offer very promising strategies for the fabrication of artificial skin substitutes, including 3D bioprinting, electrospinning or spraying, among others. In particular, skin sprays are an innovative technique still under clinical evaluation that show great potential for the delivery of cells and hydrogels to treat acute and chronic wounds. Skin sprays present significant advantages compared to conventional treatments for wound healing, such as the facility of application, the possibility to treat large wound areas, or the homogeneous distribution of the sprayed material. In this article, we review the latest advances in this technology, giving a detailed description of investigational and currently commercially available acellular and cellular skin spray products, used for a variety of diseases and applying different experimental materials. Moreover, as skin sprays products are subjected to different classifications, we also explain the regulatory pathways for their commercialization and include the main clinical trials for different skin diseases and their treatment conditions. Finally, we argue and suggest possible future trends for the biotechnology of skin sprays for a better use in clinical dermatology. Skin sprays represent a promising technique for wound healing applications. Skin sprays can deliver cells and hydrogels with great facility over large wounds. Many skin spray products have been studied, only a few have been commercialized. Numerous clinical trials study spray products for skin diseases like psoriasis. Improved spraying devices should be developed for different materials and cells.
Collapse
|
9
|
Burn Wound Healing: Clinical Complications, Medical Care, Treatment, and Dressing Types: The Current State of Knowledge for Clinical Practice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031338. [PMID: 35162360 PMCID: PMC8834952 DOI: 10.3390/ijerph19031338] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023]
Abstract
According to the World Health Organization (WHO), it is estimated that each year approximately 11 million people suffer from burn wounds, 180,000 of whom die because of such injuries. Regardless of the factors causing burns, these are complicated wounds that are difficult to heal and are associated with high mortality rates. Medical care of a burn patient requires a lot of commitment, experience, and multidirectional management, including surgical activities and widely understood pharmacological approaches. This paper aims to comprehensively review the current literature concerning burn wounds, including classification of burns, complications, medical care, and pharmacological treatment. We also overviewed the dressings (with an emphasis on the newest innovations in this field) that are currently used in medical practice to heal wounds.
Collapse
|
10
|
Waldner M, Ismail T, Lunger A, Klein HJ, Schweizer R, Alan O, Breckwoldt T, Giovanoli P, Plock JA. Evolution of a concept with enzymatic debridement and autologous in situ cell and platelet-rich fibrin therapy (BroKerF). Scars Burn Heal 2022; 8:20595131211052394. [PMID: 35024172 PMCID: PMC8743980 DOI: 10.1177/20595131211052394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Deep partial-thickness burns are traditionally treated by tangential excision and split thickness skin graft (STSG) coverage. STSGs create donor site morbidity and increase the wound surface in burn patients. Herein, we present a novel concept consisting of enzymatic debridement of deep partial-thickness burns followed by co-delivery of autologous keratinocyte suspension and plated-rich fibrin (PRF) or fibrin glue. MATERIAL AND METHODS In a retrospective case study, patients with deep partial-thickness burns treated with enzymatic debridement and autologous cell therapy combined with PRF or fibrin glue (BroKerF) between 2017 and 2018 were analysed. BroKerF was applied to up to 15% total body surface area (TBSA); larger injuries were combined with surgical excision and skin grafting. Exclusion criteria were age <18 or >70 years, I°, IIa°-only, III° burns and loss of follow-up. RESULTS A total of 20 patients with burn injuries of 16.8% ± 10.3% TBSA and mean Abbreviated Burn Severity Score 5.45 ± 1.8 were identified. Of the patients, 65% (n = 13) were treated with PRF, while 35% (n = 7) were treated with fibrin glue. The mean area treated with BroKerF was 7.5% ± 0.05% TBSA, mean time to full epithelialization was 21.06 ± 9.2 days and mean hospitalization time was 24.7 ± 14.4 days. Of the patients, 35% (n = 7) needed additional STSG, 43% (n = 3) of whom had biopsy-proven wound infections. CONCLUSION BroKerF is an innovative treatment strategy, which, in our opinion, will show its efficacy when higher standardization is achieved. The combination of selective debridement and autologous skin cells in a fibrin matrix combines regenerative measures for burn treatment. LAY SUMMARY Patients suffering from large burn wounds often require the use of large skin grafts to bring burned areas to heal. Before the application of skin grafts, the burned skin must be removed either by surgery or using enzymatic agents. In this article, we describe a method where small areas of skin are taken and skin cells are extracted and sprayed on wound areas that were treated with an enzymatic agent. The cells are held in place by a substance extracted from patients' blood (PRF) that is sprayed on the wound together with the skin cells. We believe this technique can be helpful to reduce the need of skin grafts in burned patients and improve the healing process.
Collapse
Affiliation(s)
- Matthias Waldner
- Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Tarek Ismail
- Division of Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Alexander Lunger
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Holger J Klein
- Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Riccardo Schweizer
- Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Oramary Alan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Wien, Austria
| | | | - Pietro Giovanoli
- Plastic Surgery and Hand Surgery, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Jan A Plock
- Medizinische Fakultät, Universität Zürich, Zurich, Switzerland
- Plastic Surgery and Hand Surgery, Kantonsspital Aarau AG, Aarau, Switzerland
| |
Collapse
|
11
|
Motamedi S, Esfandpour A, Babajani A, Jamshidi E, Bahrami S, Niknejad H. The Current Challenges on Spray-Based Cell Delivery to the Skin Wounds. Tissue Eng Part C Methods 2021; 27:543-558. [PMID: 34541897 DOI: 10.1089/ten.tec.2021.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell delivery through spray instruments is a promising and effective method in tissue engineering and regenerative medicine. It is used for treating different acute and chronic wounds, including burns with different etiologies, chronic diabetic or venous wounds, postcancer surgery, and hypopigmentation disorders. Cell spray can decrease the needed donor site area compared with conventional autologous skin grafting. Keratinocytes, fibroblasts, melanocytes, and mesenchymal stem cells are promising cell sources for cell spray procedures. Different spray instruments are designed and utilized to deliver the cells to the intended skin area. In an efficient spray instrument, cell viability and wound coverage are two determining parameters influenced by various physical and biological factors such as air pressure, spraying distance, viscosity of suspension, stiffness of the wound surface, and velocity of impact. Besides, to improve cell delivery by spray instruments, some matrices and growth factors can be added to cell suspensions. This review focuses on the different types of cells and spray instruments used in cell delivery procedures. It also discusses physical and biological parameters associated with cell viability and wound coverage in spray instruments. Moreover, the recent advances in codelivery of cells with biological glues and growth factors, as well as clinical translation of cell spraying, have been reviewed. Impact statement Skin wounds are a group of prevalent injuries that can lead to life-threatening complexities. As a focus of interest, stem cell therapy and spray-based cell delivery have effectively decreased associated morbidity and mortality. This review summarizes a broad scope of recent evidence related to spray-based cell therapy, instruments, and approaches adopted to make the process more efficient in treating skin wounds. An overview including utilized cell types, clinical cases, and current challenges is also provided.
Collapse
Affiliation(s)
- Shiva Motamedi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefeh Esfandpour
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zhang L, Yan X, An L, Wang M, Xu X, Ma Z, Nie M, Du F, Zhang J, Yu S. Novel pneumatically assisted atomization device for living cell delivery: application of sprayed mesenchymal stem cells for skin regeneration. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00144-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Wittig O, Diaz-Solano D, Chacín T, Rodriguez Y, Ramos G, Acurero G, Leal F, Cardier JE. Healing of deep dermal burns by allogeneic mesenchymal stromal cell transplantation. Int J Dermatol 2020; 59:941-950. [PMID: 32501530 DOI: 10.1111/ijd.14949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deep dermal and full-thickness burns are not only difficult to treat, but they are also associated with significant morbidity and mortality. Recent reports have proposed the use of mesenchymal stromal cells (MSCs) for inducing tissue repair in burn injuries. OBJECTIVE We aim to evaluate the effect of allogeneic MSC transplantation on full-thickness burns with delayed healing. MATERIAL AND METHODS This study includes five patients with AB B/B burns. All patients received conservative treatments, including cleaning, debridement of necrotic tissue, and silver based dressing on the burn wounds. Cryopreserved allogeneic MSCs were thawed and rapidly expanded and used for application in burned patients. MSCs were implanted into preclotted platelet-rich plasma onto the surface of burn wounds. RESULTS All treated burn wounds showed early granulation tissue and rapid re-epithelialization after MSC transplantation. Healing took between 1 and 5 months after MSC transplantation. Repair of burn wounds was associated with slight discoloration of the regenerated skin without hypertrophic scarring or contractures. CONCLUSION Our results provide evidence of healing in deep- and full-thickness burns by allogeneic MSC transplantation. Rapid healing of burn patients, after MSC transplantation, improves their quality of life and reduces the length of hospitalization. Future studies incorporating a larger number of patients may confirm the results obtained in this work.
Collapse
Affiliation(s)
- Olga Wittig
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado, Venezuela
| | - Dylana Diaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado, Venezuela
| | - Tulio Chacín
- Centro de Atención Integral Para el Quemado (Cainpaq), Hospital Coromoto - PDVSA, Maracaibo Apartado, Venezuela
| | | | - Giselle Ramos
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado, Venezuela
| | - Gleriset Acurero
- Centro de Atención Integral Para el Quemado (Cainpaq), Hospital Coromoto - PDVSA, Maracaibo Apartado, Venezuela
| | - Fredy Leal
- Centro de Atención Integral Para el Quemado (Cainpaq), Hospital Coromoto - PDVSA, Maracaibo Apartado, Venezuela
| | - Jose E Cardier
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado, Venezuela
| |
Collapse
|
14
|
Chang M, Liu J, Guo B, Fang X, Wang Y, Wang S, Liu X, Reid LM, Wang Y. Auto Micro Atomization Delivery of Human Epidermal Organoids Improves Therapeutic Effects for Skin Wound Healing. Front Bioeng Biotechnol 2020; 8:110. [PMID: 32154237 PMCID: PMC7046802 DOI: 10.3389/fbioe.2020.00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Severe skin wounds are often associated with large areas of damaged tissue, resulting in substantial loss of fluids containing electrolytes and proteins. The net result is a vulnerability clinically to skin infections. Therapies aiming to close these large openings are effective in reducing the complications of severe skin wounds. Recently, cell transplantation therapy showed the potential for rapid re-epithelialization of severe skin wounds. Here, we show the improved effects of cell transplantation therapy using a robust protocol of efficient expansion and delivery of epidermal cells for treatment of severe skin wounds. Human skin tissues were used to generate human epidermal organoids maintained under newly established culture conditions. The human epidermal organoids showed an improved capacity of passaging for at least 10 rounds, enabling organoids to expand to cell numbers required for clinical applications. A newly designed auto micro-atomization device (AMAD) was developed for delivery of human epidermal organoids onto the sites of severe skin wounds enhancing uniform and concentrated delivery of organoids, facilitating their engraftment and differentiation for skin reconstitution. With the optimal design and using pneumatic AMAD, both survival and functions of organoids were effectively protected during the spraying process. Cells in the sprayed human epidermal organoids participated in the regeneration of the epidermis at wound sites in a mouse model and accelerated wound healing significantly. The novel AMAD and out new protocol with enhanced effects with respect to both organoid expansion and efficient transplantation will be used for clincal treatments of complex, uneven, or large-area severe skin wounds.
Collapse
Affiliation(s)
- Mingyang Chang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,Translational Research Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Juan Liu
- Translational Research Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Baolin Guo
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xin Fang
- The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Shuyong Wang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,Army Tuberculosis Prevention and Control Key Laboratory, Institute of Tuberculosis Research, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaofang Liu
- Department of Obstetrics and Gynecology, Air Force Medical Center, Chinese People's Liberation Army (PLA), Beijing, China
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yunfang Wang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,Translational Research Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Jeschke MG, Rehou S, McCann MR, Shahrokhi S. Allogeneic mesenchymal stem cells for treatment of severe burn injury. Stem Cell Res Ther 2019; 10:337. [PMID: 31752987 PMCID: PMC6869190 DOI: 10.1186/s13287-019-1465-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
The most important determinant of survival post-burn injury is wound healing. For decades, allogeneic mesenchymal stem cells (MSCs) have been suggested as a potential treatment for severe burn injuries. This report describes a patient with a severe burn injury whose wounds did not heal with over 18 months of conventional burn care. When treated with allogeneic MSCs, wound healing accelerated with no adverse treatment complications. Wound sites showed no evidence of keloids or hypertrophic formation during a 6-year follow-up period. This therapeutic use of allogeneic MSCs for large non-healing burn wounds was deemed safe and effective and has great treatment potential.
Collapse
Affiliation(s)
- Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada. .,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave. D7 04, Toronto, Ontario, M4N 3M5, Canada. .,Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Sarah Rehou
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave. D7 04, Toronto, Ontario, M4N 3M5, Canada
| | | | - Shahriar Shahrokhi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave. D7 04, Toronto, Ontario, M4N 3M5, Canada.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Gerlach JC, Johnen C, Hartmann B, Plettig J, Bräutigam K, Toman N, Esteban-Vives R, Hubald S. An in vitro feasibility investigation considering primary human melanocytes for spray- grafting of freshly isolated autologous skin cells for burn treatment and a clinical case report. Surg Case Rep 2019. [DOI: 10.31487/j.scr.2019.03.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A skin cell-spray grafting technique that enables the on-site application of freshly isolated autologous single cell suspensions was already applied in many cases on caucasian patients with low skin coloration. Our project hypothesis is that these suspensions contain keratinocytes and vital melanocytes, that are of particular interest for the treatment of patients of darker skin color. To test this, we applied an in vitro model, wherein the feasibility of i) isolating and ii) spraying of freshly isolated autologous melanocyte-keratinocyte cell suspensions was investigated. Primary human epidermal keratinocytes (HEKs) and melanocytes (MCs) were isolated from skin biopsies (n=8). Biochemical parameter, cell counts, cell morphology, growth behavior and immunofluorescence results were compared in two groups using MC cultures and co-cultures of MCs with HEKs. Case information on using the method clinically with one patient is included. The sprayed mixed cell suspensions proliferated in all groups without measurable loss of viability, and MCs exhibited a regular cell morphology in monoculture up to passage 4°. The sprayed MCs and HEKs demonstrated in vitro glucose and lactate metabolism that was comparable to the pipetted controls. In co-culture, well distributed CK14+ HEKs and NKI/beteb+ MCs could be demonstrated, which interacted in the in vitro model. The ratio of HEKs : MCs in our primary cultures were microscopically counted (n=8 each) as mean +/- SD 1,211,000 (+/- 574,343) HEK : 99,625 (+/- 59,025) MC; i.e., a ratio of approx. 12 : 1. Using the isolation method clinically for a patient with dark skin coloration after suffering severe second-degree burns shows a satisfying re-pigmentation of the resulting wound post healing. Freshly isolated spray-on melanocyte/keratinocyte suspensions provide for a considerable amount of viable HEKs and MCs. Using MCs in spray-grafting suspensions could represent a promising approach for treating severe partial-thickness burns and innovative therapy developments that also aim to address cosmetic aspects.
Collapse
|
17
|
Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, Zhang Y, Timashev P. Skin tissue regeneration for burn injury. Stem Cell Res Ther 2019; 10:94. [PMID: 30876456 PMCID: PMC6419807 DOI: 10.1186/s13287-019-1203-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin is the largest organ of the body, which meets the environment most directly. Thus, the skin is vulnerable to various damages, particularly burn injury. Skin wound healing is a serious interaction between cell types, cytokines, mediators, the neurovascular system, and matrix remodeling. Tissue regeneration technology remarkably enhances skin repair via re-epidermalization, epidermal-stromal cell interactions, angiogenesis, and inhabitation of hypertrophic scars and keloids. The success rates of skin healing for burn injuries have significantly increased with the use of various skin substitutes. In this review, we discuss skin replacement with cells, growth factors, scaffolds, or cell-seeded scaffolds for skin tissue reconstruction and also compare the high efficacy and cost-effectiveness of each therapy. We describe the essentials, achievements, and challenges of cell-based therapy in reducing scar formation and improving burn injury treatment.
Collapse
Affiliation(s)
- Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Denis Butnaru
- Sechenov Biomedical Science and Technology Park, Sechenov University, Moscow, Russia
| | | | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Vitaliy Burdukovskii
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Research Center “Crystallography and Photonics” RAS, Institute of Photonic Technologies, Troitsk, Moscow, Russia
- Departments of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
18
|
Chocarro-Wrona C, López-Ruiz E, Perán M, Gálvez-Martín P, Marchal JA. Therapeutic strategies for skin regeneration based on biomedical substitutes. J Eur Acad Dermatol Venereol 2019; 33:484-496. [PMID: 30520159 DOI: 10.1111/jdv.15391] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Regenerative medicine and tissue engineering (TE) have experienced significant advances in the development of in vitro engineered skin substitutes, either for replacement of lost tissue in skin injuries or for the generation of in vitro human skin models to research. However, currently available skin substitutes present different limitations such as expensive costs, abnormal skin microstructure and engraftment failure. Given these limitations, new technologies, based on advanced therapies and regenerative medicine, have been applied to develop skin substitutes with several pharmaceutical applications that include injectable cell suspensions, cell-spray devices, sheets or 3Dscaffolds for skin tissue regeneration and others. Clinical practice for skin injuries has evolved to incorporate these innovative applications to facilitate wound healing, improve the barrier function of the skin, prevent infections, manage pain and even to ameliorate long-term aesthetic results. In this article, we review current commercially available skin substitutes for clinical use, as well as the latest advances in biomedical and pharmaceutical applications used to design advanced therapies and medical products for wound healing and skin regeneration. We highlight the current progress in clinical trials for wound healing as well as the new technologies that are being developed and hold the potential to generate skin substitutes such as 3D bioprinting-based strategies.
Collapse
Affiliation(s)
- C Chocarro-Wrona
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - E López-Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | - M Perán
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | - P Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain.,Advanced Therapies Area, Bioibérica S.A.U., Barcelona, Spain
| | - J A Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| |
Collapse
|
19
|
Stone Ii R, Natesan S, Kowalczewski CJ, Mangum LH, Clay NE, Clohessy RM, Carlsson AH, Tassin DH, Chan RK, Rizzo JA, Christy RJ. Advancements in Regenerative Strategies Through the Continuum of Burn Care. Front Pharmacol 2018; 9:672. [PMID: 30038569 PMCID: PMC6046385 DOI: 10.3389/fphar.2018.00672] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
Abstract
Burns are caused by several mechanisms including flame, scald, chemical, electrical, and ionizing and non-ionizing radiation. Approximately half a million burn cases are registered annually, of which 40 thousand patients are hospitalized and receive definitive treatment. Burn care is very resource intensive as the treatment regimens and length of hospitalization are substantial. Burn wounds are classified based on depth as superficial (first degree), partial-thickness (second degree), or full-thickness (third degree), which determines the treatment necessary for successful healing. The goal of burn wound care is to fully restore the barrier function of the tissue as quickly as possible while minimizing infection, scarring, and contracture. The aim of this review is to highlight how tissue engineering and regenerative medicine strategies are being used to address the unique challenges of burn wound healing and define the current gaps in care for both partial- and full-thickness burn injuries. This review will present the current standard of care (SOC) and provide information on various treatment options that have been tested pre-clinically or are currently in clinical trials. Due to the complexity of burn wound healing compared to other skin injuries, burn specific treatment regimens must be developed. Recently, tissue engineering and regenerative medicine strategies have been developed to improve skin regeneration that can restore normal skin physiology and limit adverse outcomes, such as infection, delayed re-epithelialization, and scarring. Our emphasis will be centered on how current clinical and pre-clinical research of pharmacological agents, biomaterials, and cellular-based therapies can be applied throughout the continuum of burn care by targeting the stages of wound healing: hemostasis, inflammation, cell proliferation, and matrix remodeling.
Collapse
Affiliation(s)
- Randolph Stone Ii
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Shanmugasundaram Natesan
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Christine J Kowalczewski
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Lauren H Mangum
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States.,Extremity Trauma and Regenerative Medicine, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Nicholas E Clay
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Ryan M Clohessy
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Anders H Carlsson
- Dental and Craniofacial Trauma Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - David H Tassin
- Dental and Craniofacial Trauma Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Rodney K Chan
- Dental and Craniofacial Trauma Research, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Julie A Rizzo
- Burn Flight Team, US Army Institute of Surgical Research San Antonio, TX, United States
| | - Robert J Christy
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research San Antonio, TX, United States
| |
Collapse
|
20
|
Esteban-Vives R, Corcos A, Choi MS, Young MT, Over P, Ziembicki J, Gerlach JC. Cell-spray auto-grafting technology for deep partial-thickness burns: Problems and solutions during clinical implementation. Burns 2018; 44:549-559. [DOI: 10.1016/j.burns.2017.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
|
21
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
22
|
Kruse CR, Sakthivel D, Sinha I, Helm D, Sørensen JA, Eriksson E, Nuutila K. Evaluation of the efficacy of cell and micrograft transplantation for full-thickness wound healing. J Surg Res 2018; 227:35-43. [PMID: 29804860 DOI: 10.1016/j.jss.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/09/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Skin grafting is the current standard of care in the treatment of full-thickness burns and other wounds. It is sometimes associated with substantial problems, such as poor quality of the healed skin, scarring, and lack of donor-site skin in large burns. To overcome these problems, alternative techniques that could provide larger expansion of a skin graft have been introduced over the years. Particularly, different cell therapies and methods to further expand skin grafts to minimize the need for donor skin have been attempted. The purpose of this study was to objectively evaluate the efficacy of cell and micrograft transplantation in the healing of full-thickness wounds. MATERIALS AND METHODS Allogeneic cultured keratinocytes and fibroblasts, separately and together, as well as autologous and allogeneic skin micrografts were transplanted to full-thickness rat wounds, and healing was studied over time. In addition, wound fluid was collected, and the level of various cytokines and growth factors in the wound after transplantation was measured. RESULTS Our results showed that both autologous and allogeneic micrografts were efficient treatment modalities for full-thickness wound healing. Allogeneic skin cell transplantation did not result in wound closure, and no viable cells were found in the wound 10 d after transplantation. CONCLUSIONS Our study demonstrated that allogeneic micrografting is a possible treatment modality for full-thickness wound healing. The allografts stayed viable in the wound and contributed to both re-epithelialization and formation of dermis, whereas allogeneic skin cell transplantation did not result in wound closure.
Collapse
Affiliation(s)
- Carla R Kruse
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Plastic and Reconstructive Surgery, Odense University Hospital, Denmark
| | - Dharaniya Sakthivel
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Douglas Helm
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens A Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Denmark
| | | | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
23
|
Ilic D, Yau S. Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 April-31 May 2017. Regen Med 2017; 12:721-731. [PMID: 28976836 DOI: 10.2217/rme-2017-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dusko Ilic
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Science & Medicine, King's College London, London, UK
| | - Sharon Yau
- Cellular Therapy from Bench to Market Program, Faculty of Science & Medicine, King's College London, London, UK
| |
Collapse
|