1
|
Tarannum N, Pooja K, Jakhar S, Mavi A. Nanoparticles assisted intra and transdermic delivery of antifungal ointment: an updated review. DISCOVER NANO 2024; 19:11. [PMID: 38195832 PMCID: PMC10776542 DOI: 10.1186/s11671-023-03932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
This review paper highlights the trans-dermic delivery of nanoparticles (NPs) based antifungal ointments with the help of nanotechnology. It also describes the novel trans-dermal approach utilizing various nanoparticles which enables an efficient delivery to the target site. This current review gives an overview about past research and developments as well as the current nanoparticle-based ointments. This review also presents data regarding types, causes of infection, and different pathogens within their infection site. It also gives information about antifungal ointments with their activity and side effects of antifungal medicines. Additionally, this review also focuses on the future aspects of the topical administration of nanoparticle-based antifungal ointments. These nanoparticles can encapsulate multiple antifungal drugs as a combination therapy targeting different aspects of fungal infection. Nanoparticles can be designed in such a way that they can specifically target fungal cells and do not affect healthy cells. Nanoparticle based antifungal ointments exhibit outstanding potential to treat fungal diseases. As further research and advancements evolve in nanotechnology, we expect more development of nanoparticle-based antifungal formulations shortly. This paper discusses all the past and future applications, recent trends, and developments in the various field and also shows its bright prospective in the upcoming years.
Collapse
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India.
| | - Km Pooja
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Shivani Jakhar
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Anshika Mavi
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| |
Collapse
|
2
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
3
|
Gbian DL, Omri A. Lipid-Based Drug Delivery Systems for Diseases Managements. Biomedicines 2022; 10:2137. [PMID: 36140237 PMCID: PMC9495957 DOI: 10.3390/biomedicines10092137] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Liposomes are tiny lipid-based vesicles composed of one or more lipid bilayers, which facilitate the encapsulation of hydrophilic, lipophilic, and amphiphilic biological active agents. The description of the physicochemical properties, formulation methods, characteristics, mechanisms of action, and large-scale manufacturing of liposomes as delivery systems are deeply discussed. The benefits, toxicity, and limitations of the use of liposomes in pharmacotherapeutics including in diagnostics, brain targeting, eye and cancer diseases, and in infections are provided. The experimental approaches that may reduce, or even bypass, the use of liposomal drug drawbacks is described. The application of liposomes in the treatment of numerous diseases is discussed.
Collapse
Affiliation(s)
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
4
|
A Narrative Review of the Potential Roles of Lipid-Based Vesicles (Vesiculosomes) in Burn Management. Sci Pharm 2022. [DOI: 10.3390/scipharm90030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burn injuries can have a lasting effect on people’s quality of life, as they negatively impact their physical and mental health. Then, they are likely to suffer psychological problems as a result. A serious problem is that deep burns are more challenging to treat due to their slow healing rate and susceptibility to microbial infection. Conventional topical medications used for burn treatment are sometimes ineffective because they cannot optimize their ability of transcutaneous absorption at the targeted site and accelerate healing. However, nanotechnology offers excellent prospects for developing current medical wound therapies and is capable of addressing issues such as low drug stability, water solubility, permeability, and bioavailability. The current review focuses on lipid-based vesicles (vesiculosomes) as an example of advanced delivery systems, showing their potential clinical applications in burn wound management. Vesiculosomes may help overcome impediments including the low bioavailability of active agents, offering the controlled release of drugs, increased drug stability, fewer side effects, and reduced dosing frequency, which will ultimately improve therapeutic efficacy and patient compliance. We discuss the application of various types of vesiculosomes such as liposomes, niosomes, ethosomes, cubosomes, transfersomes, and phytosomes in burn healing therapy, as these demonstrate superior skin penetration compared to conventional burn topical treatment. We also highlight their noteworthy uses in the formulation of natural products and discuss the current status as well as future perspectives of these carriers in burn management. Furthermore, the burn treatment options currently available in the market are also summarized.
Collapse
|
5
|
Swingler S, Gupta A, Gibson H, Heaselgrave W, Kowalczuk M, Adamus G, Radecka I. The Mould War: Developing an Armamentarium against Fungal Pathogens Utilising Thymoquinone, Ocimene, and Miramistin within Bacterial Cellulose Matrices. MATERIALS 2021; 14:ma14102654. [PMID: 34070218 PMCID: PMC8158721 DOI: 10.3390/ma14102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022]
Abstract
An increase in antifungal resistance has seen a surge in fungal wound infections in patients who are immunocompromised resulting from chemotherapy, disease, and burns. Human pathogenic fungi are increasingly becoming resistant to a sparse repertoire of existing antifungal drugs, which has given rise to the need to develop novel treatments for potentially lethal infections. Bacterial cellulose (BC) produced by Gluconacetobacter xylinus has been shown to possess many properties that make it innately useful as a next-generation biopolymer to be utilised as a wound dressing. The current study demonstrates the creation of a pharmacologically active wound dressing by loading antifungal agents into a biopolymer hydrogel to produce a novel wound dressing. Amphotericin B is known to be highly hepatotoxic, which reduces its appeal as an antifungal drug, especially in patients who are immunocompromised. This, coupled with an increase in antifungal resistance, has seen a surge in fungal wound infections in patients who are immunodeficient due to chemotherapy, disease, or injury. Antifungal activity was conducted via Clinical & Laboratory Standards Institute (CLSI) M27, M38, M44, and M51 against Candida auris, Candida albicans, Aspergillus fumigatus, and Aspergillus niger. This study showed that thymoquinone has a comparable antifungal activity to amphotericin B with mean zones of inhibition of 21.425 ± 0.925 mm and 22.53 ± 0.969 mm, respectively. However, the mean survival rate of HEp-2 cells when treated with 50 mg/L amphotericin B was 29.25 ± 0.854% compared to 71.25 ± 1.797% when treated with 50 mg/L thymoquinone. Following cytotoxicity assays against HEp-2 cells, thymoquinone showed a 71.25 ± 3.594% cell survival, whereas amphotericin B had a mean cell survival rate of 29.25 ± 1.708%. The purpose of this study was to compare the efficacy of thymoquinone, ocimene, and miramistin against amphotericin B in the application of novel antifungal dressings.
Collapse
Affiliation(s)
- Sam Swingler
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Institute of Health, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Jerome K Jerome Building, Gorway Road, Walsall Campus, Walsall WS1 3BD, UK
| | - Hazel Gibson
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| | - Wayne Heaselgrave
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Department of Biomedical Science, University of Wolverhampton, MA Building, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Iza Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| |
Collapse
|
6
|
Waghule T, Sankar S, Rapalli VK, Gorantla S, Dubey SK, Chellappan DK, Dua K, Singhvi G. Emerging role of nanocarriers based topical delivery of
anti‐fungal
agents in combating growing fungal infections. Dermatol Ther 2020; 33:e13905. [DOI: 10.1111/dth.13905] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Tejashree Waghule
- Department of Pharmacy Birla Institute of Technology and Science Pilani India
| | - Shridula Sankar
- Department of Pharmacy Birla Institute of Technology and Science Pilani India
| | | | - Srividya Gorantla
- Department of Pharmacy Birla Institute of Technology and Science Pilani India
| | - Sunil Kumar Dubey
- Department of Pharmacy Birla Institute of Technology and Science Pilani India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences School of Pharmacy, International Medical University Kuala Lumpur Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS) Ultimo New South Wales Australia
- Center for Inflammation Centenary Institute Sydney New South Wales Australia
- Priority Research Center for Healthy Lungs Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN) Callaghan New South Wales Australia
| | - Gautam Singhvi
- Department of Pharmacy Birla Institute of Technology and Science Pilani India
| |
Collapse
|
7
|
Vera‐González N, Bailey‐Hytholt CM, Langlois L, Camargo Ribeiro F, Souza Santos EL, Junqueira JC, Shukla A. Anidulafungin liposome nanoparticles exhibit antifungal activity against planktonic and biofilm
Candida albicans. J Biomed Mater Res A 2020; 108:2263-2276. [DOI: 10.1002/jbm.a.36984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Noel Vera‐González
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| | - Christina M. Bailey‐Hytholt
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| | - Luc Langlois
- Department of Chemistry Brown University Providence Rhode Island USA
| | - Felipe Camargo Ribeiro
- Institute of Science and Technology, São Paulo State University (UNESP) São Paulo Brazil
| | | | | | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University Providence Rhode Island USA
| |
Collapse
|