1
|
Chen X, Bao Y, Sun G, Wang X, Zhu J. UNC13B regulates the sensitivity of Wilms' tumor cells to doxorubicin by modulating lysosomes. Oncol Lett 2024; 28:446. [PMID: 39091580 PMCID: PMC11292464 DOI: 10.3892/ol.2024.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Wilms' tumor is a malignant neoplasm where current medical advancements have significantly improved survival rates; however, challenges persist such as the resistance of the tumor to chemotherapy drugs like doxorubicin. This necessitates higher dosages, leading to decreased sensitivity. However, using high doses of doxorubicin can have late effects on the heart. Unc-13 homolog B (UNC13B) may be involved in the drug resistance in several tumors, yet its role in modulating drug sensitivity in Wilms' tumor remains unexplored. UNC13B levels were quantified using reverse transcription-qPCR and Western blotting. The half-maximal inhibitory concentration for doxorubicin, vincristine, and actinomycin-D was determined using CCK-8 assays. Cell cycle and apoptosis were analyzed using flow cytometry, and lysosomal changes were observed using Lyso-Tracker staining. The present study initially evaluated UNC13B expression levels in the Wilms' tumor 17.94 cell line. Additionally, through short hairpin RNA-mediated knockdown, changes in doxorubicin sensitivity in 17.94 Wilms' tumor cells were assessed. Concurrently, preliminary investigations into the role of UNC13B in regulating lysosomes was performed, revealing a significant positive association between UNC13B levels and lysosome formation in the 17.94 cell line. Lysosomes likely serve a role in the sensitivity of Wilms' tumor cell lines to drugs. Elevated UNC13B expression was observed in the 17.94 Wilms' tumor cell line compared to normal kidney cells. UNC13B knockdown also resulted in increased apoptosis levels upon doxorubicin treatment. Immunofluorescence revealed UNC13B localization within cellular vesicles, and its knockdown significantly decreased lysosome levels. Overall, the findings of the present study demonstrate that UNC13B regulates the sensitivity of the Wilms' tumor 17.94 cell line to doxorubicin by modulating lysosome formation within cells. The results suggest that UNC13B is likely an enriched target involved in lysosomal regulation in certain tumors, offering a new approach for optimizing chemotherapy in Wilms' tumor and other cancers with high UNC13B expression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yingying Bao
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ge Sun
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Jiajun Zhu
- Department of Neonatology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
2
|
Pichavaram P, Jablonowski CM, Fang J, Fleming AM, Gil HJ, Boghossian AS, Rees MG, Ronan MM, Roth JA, Morton CL, Zambetti GP, Davidoff AM, Yang J, Murphy AJ. Oncogenic Cells of Renal Embryonic Lineage Sensitive to the Small-Molecule Inhibitor QC6352 Display Depletion of KDM4 Levels and Disruption of Ribosome Biogenesis. Mol Cancer Ther 2024; 23:478-491. [PMID: 37988559 PMCID: PMC10987284 DOI: 10.1158/1535-7163.mct-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The histone lysine demethylases KDM4A-C are involved in physiologic processes including stem cell identity and self-renewal during development, DNA damage repair, and cell-cycle progression. KDM4A-C are overexpressed and associated with malignant cell behavior in multiple human cancers and are therefore potential therapeutic targets. Given the role of KDM4A-C in development and cancer, we aimed to test the potent, selective KDM4A-C inhibitor QC6352 on oncogenic cells of renal embryonic lineage. The anaplastic Wilms tumor cell line WiT49 and the tumor-forming human embryonic kidney cell line HEK293 demonstrated low nanomolar QC6352 sensitivity. The cytostatic response to QC6352 in WiT49 and HEK293 cells was marked by induction of DNA damage, a DNA repair-associated protein checkpoint response, S-phase cell-cycle arrest, profound reduction of ribosomal protein gene and rRNA transcription, and blockade of newly synthesized proteins. QC6352 caused reduction of KDM4A-C levels by a proteasome-associated mechanism. The cellular phenotype caused by QC6352 treatment of reduced migration, proliferation, tumor spheroid growth, DNA damage, and S-phase cell-cycle arrest was most closely mirrored by knockdown of KDM4A as determined by siRNA knockdown of KDM4A-C. QC6352 sensitivity correlated with high basal levels of ribosomal gene transcription in more than 900 human cancer cell lines. Targeting KDM4A may be of future therapeutic interest in oncogenic cells of embryonic renal lineage or cells with high basal expression of ribosomal protein genes.
Collapse
Affiliation(s)
| | | | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Andrew M. Fleming
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hyea Jin Gil
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Matthew G. Rees
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Melissa M. Ronan
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Jennifer A. Roth
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Gerard P. Zambetti
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, Ciceri S, Gisselsson D, Gadd S, Walz AL, Furtwaengler R, Drost J, Al-Saadi R, Evageliou N, Gooskens SL, Hong AL, Murphy AJ, Ortiz MV, O'Sullivan MJ, Mullen EA, van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Grundy PE, Geller JI, Dome JS, Perlman EJ, Gessler M, Huff V, Pritchard-Jones K. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 2024; 21:158-180. [PMID: 37848532 DOI: 10.1038/s41585-023-00824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Richard D Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Skåne, Sweden
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amy L Walz
- Division of Hematology,Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rhoikos Furtwaengler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital Bern University, Bern, Switzerland
| | - Jarno Drost
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Evageliou
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, CHOP Specialty Care Center, Vorhees, NJ, USA
| | - Saskia L Gooskens
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael V Ortiz
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Conrad V Fernandez
- Division of Paediatric Hematology Oncology, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norbert Graf
- Department of Paediatric Oncology and Hematology, Saarland University Hospital, Homburg, Germany
| | - Paul E Grundy
- Department of Paediatrics Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital and the Department of Paediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth J Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
4
|
Su X, Lu X, Bazai SK, Dainese L, Verschuur A, Dumont B, Mouawad R, Xu L, Cheng W, Yan F, Irtan S, Lindner V, Paillard C, Le Bouc Y, Coulomb A, Malouf GG. Delineating the interplay between oncogenic pathways and immunity in anaplastic Wilms tumors. Nat Commun 2023; 14:7884. [PMID: 38036539 PMCID: PMC10689851 DOI: 10.1038/s41467-023-43290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Wilms tumors are highly curable in up to 90% of cases with a combination of surgery and radio-chemotherapy, but treatment-resistant types such as diffuse anaplastic Wilms tumors pose significant therapeutic challenges. Our multi-omics profiling unveils a distinct desert-like diffuse anaplastic Wilms tumor subtype marked by immune/stromal cell depletion, TP53 alterations, and cGAS-STING pathway downregulation, accounting for one-third of all diffuse anaplastic cases. This subtype, also characterized by reduced CD8 and CD3 infiltration and active oncogenic pathways involving histone deacetylase and DNA repair, correlates with poor clinical outcomes. These oncogenic pathways are found to be conserved in anaplastic Wilms tumor cell models. We identify histone deacetylase and/or WEE1 inhibitors as potential therapeutic vulnerabilities in these tumors, which might also restore tumor immunogenicity and potentially enhance the effects of immunotherapy. These insights offer a foundation for predicting outcomes and personalizing treatment strategies for aggressive pediatric Wilms tumors, tailored to individual immunological landscapes.
Collapse
Affiliation(s)
- Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofan Lu
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sehrish Khan Bazai
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France
| | - Linda Dainese
- Department of Pathology, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
- UF Tumorothèque HUEP, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, UMR_S .938, Paris, France
| | - Arnauld Verschuur
- Department of Pediatric Oncology, Hôpital d'Enfants de La Timone, F-13005, Marseille, France
| | - Benoit Dumont
- Centre Léon Bérard, Institut d'Hématologie et d'Oncologie Pédiatrique (IHOPe), Lyon, France
| | - Roger Mouawad
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Li Xu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenxuan Cheng
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sabine Irtan
- Department of Pediaric Surgery, AP-HP, Hôpital Armand Trousseau, Sorbonne Université, Paris, France
| | | | - Catherine Paillard
- Department of Pediatric Onco-hematology, CHRU Strasbourg, Strasbourg Université, Strasbourg, France
| | - Yves Le Bouc
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, UMR_S .938, Paris, France
| | - Aurore Coulomb
- Department of Pathology, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France.
- UF Tumorothèque HUEP, Hôpital Armand Trousseau, Assistance-Publique Hôpitaux de Paris, Sorbonne Université, Paris, France.
- Centre de Recherche Saint-Antoine (CRSA), INSERM, Sorbonne Université, UMR_S .938, Paris, France.
| | - Gabriel G Malouf
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France.
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
5
|
Ortiz MV, Koenig C, Armstrong AE, Brok J, de Camargo B, Mavinkurve-Groothuis AMC, Herrera TBV, Venkatramani R, Woods AD, Dome JS, Spreafico F. Advances in the clinical management of high-risk Wilms tumors. Pediatr Blood Cancer 2023; 70 Suppl 2:e30342. [PMID: 37096797 PMCID: PMC10857813 DOI: 10.1002/pbc.30342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 04/26/2023]
Abstract
Outcomes are excellent for the majority of patients with Wilms tumors (WT). However, there remain WT subgroups for which the survival rate is approximately 50% or lower. Acknowledging that the composition of this high-risk group has changed over time reflecting improvements in therapy, we introduce the authors' view of the historical and current approach to the classification and treatment of high-risk WT. For this review, we consider high-risk WT to include patients with newly diagnosed metastatic blastemal-type or diffuse anaplastic histology, those who relapse after having been initially treated with three or more different chemotherapeutics, or those who relapse more than once. In certain low- or low middle-income settings, socio-economic factors expand the definition of what constitutes a high-risk WT. As conventional therapies are inadequate to cure the majority of high-risk WT patients, advancement of laboratory and early-phase clinical investigations to identify active agents is urgently needed.
Collapse
Affiliation(s)
- Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christa Koenig
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesper Brok
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Oncology and Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Beatriz de Camargo
- Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | | | | | - Rajkumar Venkatramani
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew D Woods
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Jeffrey S Dome
- Division of Oncology, Children's National Hospital and Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
6
|
Wojcik HM, Lovvorn HN, Hollingshead M, Pierce J, Stotler H, Murphy AJ, Borgel S, Phelps HM, Correa H, Perantoni AO. Exploiting embryonic niche conditions to grow Wilms tumor blastema in culture. Front Oncol 2023; 13:1091274. [PMID: 37007076 PMCID: PMC10061139 DOI: 10.3389/fonc.2023.1091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionWilms Tumor (WT), or nephroblastoma, is the most common pediatric kidney cancer. Most WTs display a “favorable” triphasic histology, in which the tumor is comprised of blastemal, stromal, and epithelial cell types. Blastemal predominance after neoadjuvant chemotherapy or diffuse anaplasia (“unfavorable” histology; 5-8%) portend a worse prognosis. Blastema likely provide the putative cancer stem cells (CSCs), which retain molecular and histologic features characteristic of nephron progenitor cells (NPCs), within WTs. NPCs arise in the metanephric mesenchyme (MM) and populate the cap mesenchyme (CM) in the developing kidney. WT blastemal cells, like NPCs, similarly express markers, SIX2 and CITED1. Tumor xenotransplantation is currently the only dependable method to propagate tumor tissue for research or therapeutic screening, since efforts to culture tumors in vitro as monolayers have invariably failed. Therefore, a critical need exists to propagate WT stem cells rapidly and efficiently for high-throughput, real-time drug screening.MethodsPreviously, our lab developed niche conditions that support the propagation of murine NPCs in culture. Applying similar conditions to WTs, we assessed our ability to maintain key NPC "stemness" markers, SIX2, NCAM, and YAP1, and CSC marker ALDHI in cells from five distinct untreated patient tumors.ResultsAccordingly, our culture conditions maintained the expression of these markers in cultured WT cells through multiple passages of rapidly dividing cells.DiscussionThese findings suggest that our culture conditions sustain the WT blastemal population, as previously shown for normal NPCs. As a result, we have developed new WT cell lines and a multi-passage in vitro model for studying the blastemal lineage/CSCs in WTs. Furthermore, this system supports growth of heterogeneous WT cells, upon which potential drug therapies could be tested for efficacy and resistance.
Collapse
Affiliation(s)
- Heather M. Wojcik
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Harold N. Lovvorn
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Melinda Hollingshead
- Biological Testing Branch/Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States
| | - Janene Pierce
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Howard Stotler
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Andrew J. Murphy
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Suzanne Borgel
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Hannah M. Phelps
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Hernan Correa
- Division of Pediatric Pathology, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Alan O. Perantoni
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Alan O. Perantoni,
| |
Collapse
|
7
|
Ortiz MV, Koenig C, Armstrong AE, Brok J, de Camargo B, Mavinkurve-Groothuis AMC, Herrera TBV, Venkatramani R, Woods AD, Dome JS, Spreafico F. Advances in the clinical management of high-risk Wilms tumors. Pediatr Blood Cancer 2023; 70:e30153. [PMID: 36625399 DOI: 10.1002/pbc.30153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023]
Abstract
Outcomes are excellent for the majority of patients with Wilms tumors (WT). However, there remain WT subgroups for which the survival rate is approximately 50% or lower. Acknowledging that the composition of this high-risk group has changed over time reflecting improvements in therapy, we introduce the authors' view of the historical and current approach to the classification and treatment of high-risk WT. For this review, we consider high-risk WT to include patients with newly diagnosed metastatic blastemal-type or diffuse anaplastic histology, those who relapse after having been initially treated with three or more different chemotherapeutics, or those who relapse more than once. In certain low- or low middle-income settings, socio-economic factors expand the definition of what constitutes a high-risk WT. As conventional therapies are inadequate to cure the majority of high-risk WT patients, advancement of laboratory and early-phase clinical investigations to identify active agents is urgently needed.
Collapse
Affiliation(s)
- Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christa Koenig
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesper Brok
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK.,Department of Pediatric Oncology and Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Beatriz de Camargo
- Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | | | | | - Rajkumar Venkatramani
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew D Woods
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Jeffrey S Dome
- Division of Oncology, Children's National Hospital and Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
8
|
Jablonowski CM, Gil HJ, Pinto EM, Pichavaram P, Fleming AM, Clay MR, Hu D, Morton CL, Pruett-Miller SM, Hansen BS, Chen X, Jones KMD, Liu Y, Ma X, Yang J, Davidoff AM, Zambetti GP, Murphy AJ. TERT Expression in Wilms Tumor Is Regulated by Promoter Mutation or Hypermethylation, WT1, and N-MYC. Cancers (Basel) 2022; 14:cancers14071655. [PMID: 35406427 PMCID: PMC8996936 DOI: 10.3390/cancers14071655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The telomerase enzyme adds repetitive genetic sequences to the ends of chromosomes called telomeres to prevent cellular senescence. Gain of telomerase function is one of the hallmarks of human cancer. The telomerase protein is coded by the gene TERT and increased TERT RNA levels have been associated with disease relapse in Wilms tumor, the most common kidney cancer of childhood. This study aimed to determine the mechanisms of increased TERT expression in Wilms tumor. This study found mutations in the TERT promoter, increased methylation of the TERT promoter, and genomic copy number amplifications of TERT as potential mechanisms of TERT activation. Conversely, this study found that inactivating WT1 mutation was associated with low TERT RNA levels and telomerase activity. N-MYC overexpression in Wilms tumor cells resulted in increased TERT promoter activity and TERT transcription. TERT transcription is associated with molecular and histologic subgroups in Wilms tumor and telomere-targeted therapies warrant future investigation. Abstract Increased TERT mRNA is associated with disease relapse in favorable histology Wilms tumor (WT). This study sought to understand the mechanism of increased TERT expression by determining the association between TERT and WT1 and N-MYC, two proteins important in Wilms tumor pathogenesis that have been shown to regulate TERT expression. Three out of 45 (6.7%) WTs and the corresponding patient-derived xenografts harbored canonical gain-of-function mutations in the TERT promoter. This study identified near ubiquitous hypermethylation of the TERT promoter region in WT compared to normal kidney. WTs with biallelic inactivating mutations in WT1 (7/45, 15.6%) were found to have lower TERT expression by RNA-seq and qRT-PCR and lower telomerase activity determined by the telomerase repeat amplification protocol. Anaplastic histology and increased percentage of blastema were positively correlated with higher TERT expression and telomerase activity. In vitro shRNA knockdown of WT1 resulted in decreased expression of TERT, reduced colony formation, and decreased proliferation of WiT49, an anaplastic WT cell line with wild-type WT1. CRISPR-Cas9-mediated knockout of WT1 resulted in decreased expression of telomere-related gene pathways. However, an inducible Wt1-knockout mouse model showed no relationship between Wt1 knockout and Tert expression in normal murine nephrogenesis, suggesting that WT1 and TERT are coupled in transformed cells but not in normal kidney tissues. N-MYC overexpression resulted in increased TERT promoter activity and TERT transcription. Thus, multiple mechanisms of TERT activation are involved in WT and are associated with anaplastic histology and increased blastema. This study is novel because it identifies potential mechanisms of TERT activation in Wilms tumor that could be of therapeutic interests.
Collapse
Affiliation(s)
- Carolyn M. Jablonowski
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Hyea Jin Gil
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Emilia M. Pinto
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (E.M.P.); (G.P.Z.)
| | - Prahalathan Pichavaram
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Andrew M. Fleming
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz, Aurora, CO 80045, USA;
| | - Dongli Hu
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.M.P.-M.); (B.S.H.)
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.M.P.-M.); (B.S.H.)
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Karissa M. Dieseldorff Jones
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Gerard P. Zambetti
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (E.M.P.); (G.P.Z.)
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
9
|
Legge D, Li L, Moriarty W, Lee D, Szemes M, Zahed A, Panousopoulos L, Chung WY, Aghabi Y, Barratt J, Williams R, Pritchard‐Jones K, Malik KT, Oltean S, Brown KW. The epithelial splicing regulator ESRP2 is epigenetically repressed by DNA hypermethylation in Wilms tumour and acts as a tumour suppressor. Mol Oncol 2022; 16:630-647. [PMID: 34520622 PMCID: PMC8807366 DOI: 10.1002/1878-0261.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Wilms tumour (WT), an embryonal kidney cancer, has been extensively characterised for genetic and epigenetic alterations, but a proportion of WTs still lack identifiable abnormalities. To uncover DNA methylation changes critical for WT pathogenesis, we compared the epigenome of foetal kidney with two WT cell lines, filtering our results to remove common cancer-associated epigenetic changes and to enrich for genes involved in early kidney development. This identified four hypermethylated genes, of which ESRP2 (epithelial splicing regulatory protein 2) was the most promising for further study. ESRP2 was commonly repressed by DNA methylation in WT, and this occurred early in WT development (in nephrogenic rests). ESRP2 expression was reactivated by DNA methyltransferase inhibition in WT cell lines. When ESRP2 was overexpressed in WT cell lines, it inhibited cellular proliferation in vitro, and in vivo it suppressed tumour growth of orthotopic xenografts in nude mice. RNA-seq of the ESRP2-expressing WT cell lines identified several novel splicing targets. We propose a model in which epigenetic inactivation of ESRP2 disrupts the mesenchymal to epithelial transition in early kidney development to generate WT.
Collapse
Affiliation(s)
- Danny Legge
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Ling Li
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Whei Moriarty
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - David Lee
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Marianna Szemes
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Asef Zahed
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | | | - Wan Yun Chung
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Yara Aghabi
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Jasmin Barratt
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Richard Williams
- Cancer SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Karim T.A. Malik
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Sebastian Oltean
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Keith W. Brown
- School of Cellular and Molecular MedicineUniversity of BristolUK
| |
Collapse
|
10
|
SALL Proteins; Common and Antagonistic Roles in Cancer. Cancers (Basel) 2021; 13:cancers13246292. [PMID: 34944911 PMCID: PMC8699250 DOI: 10.3390/cancers13246292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Transcription factors play essential roles in regulating gene expression, impacting the cell phenotype and function, and in the response of cells to environmental conditions. Alterations in transcription factors, including gene amplification or deletion, point mutations, and expression changes, are implicated in carcinogenesis, cancer progression, metastases, and resistance to cancer treatments. Not surprisingly, transcription factor activity is altered in numerous cancers, representing a unique class of cancer drug targets. This review updates and integrates information on the SALL family of transcription factors, highlighting the synergistic and/or antagonistic functions they perform in various cancer types. Abstract SALL proteins are a family of four conserved C2H2 zinc finger transcription factors that play critical roles in organogenesis during embryonic development. They regulate cell proliferation, survival, migration, and stemness; consequently, they are involved in various human genetic disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1–3 play dual roles depending on the cancer context and stage of the disease. Current reviews of SALLs have focused only on SALL2 or SALL4, lacking an integrated view of the SALL family members in cancer. Here, we update the recent advances of the SALL members in tumor development, cancer progression, and therapy, highlighting the synergistic and/or antagonistic functions they perform in similar cancer contexts. We identified common regulatory mechanisms, targets, and signaling pathways in breast, brain, liver, colon, blood, and HPV-related cancers. In addition, we discuss the potential of the SALL family members as cancer biomarkers and in the cancer cells’ response to therapies. Understanding SALL proteins’ function and relationship will open new cancer biology, clinical research, and therapy perspectives.
Collapse
|
11
|
Szemes M, Melegh Z, Bellamy J, Park JH, Chen B, Greenhough A, Catchpoole D, Malik K. Transcriptomic Analyses of MYCN-Regulated Genes in Anaplastic Wilms' Tumour Cell Lines Reveals Oncogenic Pathways and Potential Therapeutic Vulnerabilities. Cancers (Basel) 2021; 13:656. [PMID: 33562123 PMCID: PMC7915280 DOI: 10.3390/cancers13040656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The MYCN proto-oncogene is deregulated in many cancers, most notably in neuroblastoma, where MYCN gene amplification identifies a clinical subset with very poor prognosis. Gene expression and DNA analyses have also demonstrated overexpression of MYCN mRNA, as well as focal amplifications, copy number gains and presumptive change of function mutations of MYCN in Wilms' tumours with poorer outcomes, including tumours with diffuse anaplasia. Surprisingly, however, the expression and functions of the MYCN protein in Wilms' tumours still remain obscure. In this study, we assessed MYCN protein expression in primary Wilms' tumours using immunohistochemistry of tissue microarrays. We found MYCN protein to be expressed in tumour blastemal cells, and absent in stromal and epithelial components. For functional studies, we used two anaplastic Wilms' tumour cell-lines, WiT49 and 17.94, to study the biological and transcriptomic effects of MYCN depletion. We found that MYCN knockdown consistently led to growth suppression but not cell death. RNA sequencing identified 561 MYCN-regulated genes shared by WiT49 and 17.94 cell-lines. As expected, numerous cellular processes were downstream of MYCN. MYCN positively regulated the miRNA regulator and known Wilms' tumour oncogene LIN28B, the genes encoding methylosome proteins PRMT1, PRMT5 and WDR77, and the mitochondrial translocase genes TOMM20 and TIMM50. MYCN repressed genes including the developmental signalling receptor ROBO1 and the stromal marker COL1A1. Importantly, we found that MYCN also repressed the presumptive Wilms' tumour suppressor gene REST, with MYCN knockdown resulting in increased REST protein and concomitant repression of RE1-Silencing Transcription factor (REST) target genes. Together, our study identifies regulatory axes that interact with MYCN, providing novel pathways for potential targeted therapeutics for poor-prognosis Wilms' tumour.
Collapse
Affiliation(s)
- Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| | - Zsombor Melegh
- Department of Cellular Pathology, Southmead Hospital, Bristol BS10 5NB, UK;
| | - Jacob Bellamy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| | - Ji Hyun Park
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| | - Biyao Chen
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| | - Alexander Greenhough
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Daniel Catchpoole
- The Kids Research Institute, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| |
Collapse
|
12
|
Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Wełniak-Kamińska M, Synoradzki K, Bartnik E, Cudnoch-Jędrzejewska A, Czarnecka AM. Choosing The Right Animal Model for Renal Cancer Research. Transl Oncol 2020; 13:100745. [PMID: 32092671 PMCID: PMC7036425 DOI: 10.1016/j.tranon.2020.100745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Anna Brodziak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.
| | - Stuti Chhabra
- Department of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Anna M Czarnecka
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| |
Collapse
|
13
|
Salman H, Shuai X, Nguyen-Lefebvre AT, Giri B, Ren M, Rauchman M, Robbins L, Hou W, Korkaya H, Ma Y. SALL1 expression in acute myeloid leukemia. Oncotarget 2017; 9:7442-7452. [PMID: 29484122 PMCID: PMC5800914 DOI: 10.18632/oncotarget.23448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023] Open
Abstract
Similar signaling pathways could operate in both normal hematopoietic stem and progenitor cells (HSPCs) and leukemia stem cells (LSCs). Thus, targeting LSCs signaling without substantial toxicities to normal HSPCs remains challenging. SALL1, is a member of the transcriptional network that regulates stem cell pluripotency, and lacks significant expression in most adult tissues, including normal bone marrow (NBM). We examined the expression and functional characterization of SALL1 in NBM and in acute myeloid leukemia (AML) using in vitro and in vivo assays. We showed that SALL1 is expressed preferentially in LSCs- enriched CD34+CD38- cell subpopulation but not in NBM. SALL1 inhibition resulted in decreased cellular proliferation and in inferior AML engraftment in NSG mice and it was also associated with upregulation of PTEN and downregulation of m-TOR, β-catenin, and NF-қB expression. These findings suggest that SALL1 inhibition interrupts leukemogenesis. Further studies to validate SALL1 as a potential biomarker for minimal residual disease (MRD) and to determine SALL1's role in prognostication are ongoing. Additionally, pre-clinical evaluation of SALL1 as a therapeutic target in AML is warranted.
Collapse
Affiliation(s)
- Huda Salman
- Georgia Regent University Cancer Center, Augusta, GA, USA.,Present address: Stony Brook University Cancer Center, Stony Brook, NY, USA
| | - Xiao Shuai
- Present address: Stony Brook University Cancer Center, Stony Brook, NY, USA.,Department of Hematology, West China hospital of Sichuan University, Chengdu, P.R. China
| | | | | | - Mingqiang Ren
- Georgia Regent University Cancer Center, Augusta, GA, USA
| | - Michael Rauchman
- Department of Nephrology, Saint Louis University, St Louis, MO, USA
| | - Lynn Robbins
- Department of Nephrology, Saint Louis University, St Louis, MO, USA
| | - Wei Hou
- Present address: Stony Brook University Cancer Center, Stony Brook, NY, USA
| | - Hasan Korkaya
- Georgia Regent University Cancer Center, Augusta, GA, USA
| | - Yupo Ma
- Present address: Stony Brook University Cancer Center, Stony Brook, NY, USA
| |
Collapse
|
14
|
Mengelbier LH, Bexell D, Sehic D, Ciornei CD, Gisselsson D. Orthotopic Wilms tumor xenografts derived from cell lines reflect limited aspects of tumor morphology and clinical characteristics. Pediatr Blood Cancer 2014; 61:1949-54. [PMID: 25044705 DOI: 10.1002/pbc.25131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/15/2014] [Indexed: 11/06/2022]
Abstract
BACKGROUND Wilms tumor (WT) is a pediatric tumor of the kidney, the treatment of which includes heavy chemotherapy. Affected children would likely benefit from more targeted therapies with limited side effects. Establishment of relevant orthotopic WT xenografts is important to better understand mechanisms of WT growth and for preclinical drug testing. PROCEDURE Here we established and characterized orthotopic xenografts from WT cell lines WiT49, CCG-99-11, and WT-CLS1 to ascertain in what aspects each of them recapitulated WT histology, immunophenotype, invasion, and metastatic spread. RESULTS WiT49 xenografts recapitulated near triphasic WTs with clear WT1 staining and anaplastic features, but with tumor restricted to the kidney. On the contrary both CCG-99-11 and WT-CLS1 xenografts conveyed metastatic disease. CCG-99-11 showed a blastemal phenotype whereas WT-CLS1 xenografts did not properly reflect any specific WT subtype. CONCLUSIONS From the three tested cell lines, orthotopic WiT49 xenografts best reflect the triphasic pattern of classical WT.
Collapse
|
15
|
Tian F, Yourek G, Shi X, Yang Y. The development of Wilms tumor: from WT1 and microRNA to animal models. Biochim Biophys Acta Rev Cancer 2014; 1846:180-7. [PMID: 25018051 DOI: 10.1016/j.bbcan.2014.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/01/2023]
Abstract
Wilms tumor recapitulates the development of the kidney and represents a unique opportunity to understand the relationship between normal and tumor development. This has been illustrated by the findings that mutations of Wnt/β-catenin pathway-related WT1, β-catenin, and WTX together account for about one-third of Wilms tumor cases. While intense efforts are being made to explore the genetic basis of the other two-thirds of tumor cases, it is worth noting that, epigenetic changes, particularly the loss of imprinting of the DNA region encoding the major fetal growth factor IGF2, which results in its biallelic over-expression, are closely associated with the development of many Wilms tumors. Recent investigations also revealed that mutations of Drosha and Dicer, the RNases required for miRNA generation, and Dis3L2, the 3'-5' exonuclease that normally degrades miRNAs and mRNAs, could cause predisposition to Wilms tumors, demonstrating that miRNA can play a pivotal role in Wilms tumor development. Interestingly, Lin28, a direct target of miRNA let-7 and potent regulator of stem cell self-renewal and differentiation, is significantly elevated in some Wilms tumors, and enforced expression of Lin28 during kidney development could induce Wilms tumor. With the success in establishing mice nephroblastoma models through over-expressing IGF2 and deleting WT1, and advances in understanding the ENU-induced rat model, we are now able to explore the molecular and cellular mechanisms induced by these genetic, epigenetic, and miRNA alterations in animal models to understand the development of Wilms tumor. These animal models may also serve as valuable systems to assess new treatment targets and strategies for Wilms tumor.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathophysiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, PR China
| | | | - Xiaolei Shi
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yili Yang
- Center for Translational Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|