1
|
Zhi F, Li B, Zhang C, Xia F, Wang R, Xie W, Cai S, Zhang D, Kong R, Hu Y, Yang Y, Peng Y, Cui J. NLRP6 potentiates PI3K/AKT signalling by promoting autophagic degradation of p85α to drive tumorigenesis. Nat Commun 2023; 14:6069. [PMID: 37770465 PMCID: PMC10539329 DOI: 10.1038/s41467-023-41739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
The PI3K/AKT pathway plays an essential role in tumour development. NOD-like receptors (NLRs) regulate innate immunity and are implicated in cancer, but whether they are involved in PI3K/AKT pathway regulation is poorly understood. Here, we report that NLRP6 potentiates the PI3K/AKT pathway by binding and destabilizing p85α, the regulatory subunit of PI3K. Mechanistically, NLRP6 recruits the E3 ligase RBX1 to p85α and ubiquitinates lysine 256 on p85α, which is recognized by the autophagy cargo receptor OPTN, causing selective autophagic degradation of p85α and subsequent activation of the PI3K/AKT pathway by reducing PTEN stability. We further show that loss of NLRP6 suppresses cell proliferation, colony formation, cell migration, and tumour growth in glioblastoma cells in vitro and in vivo. Disruption of the NLRP6/p85α interaction using the Pep9 peptide inhibits the PI3K/AKT pathway and generates potent antitumour effects. Collectively, our results suggest that NLRP6 promotes p85α degradation via selective autophagy to drive tumorigenesis, and the interaction between NLRP6 and p85α can be a promising therapeutic target for tumour treatment.
Collapse
Affiliation(s)
- Feng Zhi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Bowen Li
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Chuanxia Zhang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Xia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rong Wang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weihong Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sihui Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yilin Yang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Ali A, Sharma AK, Mishra PK, Saluja SS. Clinical significance of SPOP and APC gene alterations in colorectal cancer in Indian population. Mol Genet Genomics 2023:10.1007/s00438-023-02029-x. [PMID: 37289229 DOI: 10.1007/s00438-023-02029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/29/2023] [Indexed: 06/09/2023]
Abstract
Speckle-Type Poz Protein (SPOP) involved in the regulation of proteasome-mediated degradation of several oncoproteins, resulting in cancer initiation and progression. Mutations in Adenomatous Polyposis Coli (APC) gene is reported in most sporadic and hereditary colorectal cancer (CRC). Identifying the cellular changes involved in carcinogenesis when APC is mutated is an important issue that needs attention. The tumor suppressive function of SPOP and APC has long been a major focus in the research field of colorectal cancer. However, the clinical significance of SPOP and APC gene alteration in CRC has not been established to date. Mutational analysis was performed by single-strand conformational polymorphism followed by Sanger sequencing, methylation status by methylation-specific PCR, and protein expression by immunohistochemistry on 142 tumor tissues along with their adjacent non-cancerous specimens. The overall survival (OS) and recurrence free survival (RFS) were estimated by Kaplan-Meier Curve. Mutation rates of APC and SPOP gene were 2.8% and 11.9% while that of promoter hypermethylation were 37% and 47%, respectively. The grade of differentiation and Lymph node metastasis were significantly correlated with APC methylation pattern (p ≤ 0.05). The down regulation of APC was more often seen in colonic cancer compared to rectal cancer (p = 0.07) and more commonly in T3-4 depth of invasion (p = 0.07) and in patients without lymphovascular and perineural invasion (p = 0.007, p = 0.08 respectively). The median overall survival and recurrence free survival (RFS) was 67 & 36 months while 3-yr and 5-yr OS and RFS were 61.1% & 56.4% and 49.2% & 44.8%, respectively. APC promoter methylation had a better overall survival (p = 0.035) while loss of SPOP expression had a worse survival (p = 0.09). Our findings reveal high percentage of SPOP gene mutations in CRC. A significant link is found between promoter hyper methylation and protein expression in all mutant cases of APC and SPOP, suggesting that both genes may be associated in the development of colorectal cancer in people of Indian decent. Hypermethylation of APC gene and loss of SPOP expression have shown an association with disease prognosis and could be further studied looking at its potential role in planning adjuvant treatment in CRC patients.
Collapse
Affiliation(s)
- Asgar Ali
- Central Molecular Lab, Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, 110002, India
| | - Abhay Kumar Sharma
- Central Molecular Lab, Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, 110002, India
| | - Pramod Kumar Mishra
- Central Molecular Lab, Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, 110002, India
- Department of GI Surgery, GIPMER, Academic Block, New Delhi, 110002, India
| | - Sundeep Singh Saluja
- Central Molecular Lab, Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, 110002, India.
- Department of GI Surgery, GIPMER, Academic Block, New Delhi, 110002, India.
| |
Collapse
|
3
|
de Bitter TJJ, de Reuver PR, de Savornin Lohman EAJ, Kroeze LI, Vink-Börger ME, van Vliet S, Simmer F, von Rhein D, Jansen EAM, Verheij J, van Herpen CML, Nagtegaal ID, Ligtenberg MJL, van der Post RS. Comprehensive clinicopathological and genomic profiling of gallbladder cancer reveals actionable targets in half of patients. NPJ Precis Oncol 2022; 6:83. [DOI: 10.1038/s41698-022-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractGallbladder cancer (GBC) is a rare, highly aggressive malignancy with a 5-year survival rate of 5–10% in advanced cases, highlighting the need for more effective therapies. The aim of this study was to identify potentially actionable therapeutic targets for GBC. Specimens and clinicopathological data of 642 GBC patients, diagnosed between 2000 and 2019 were collected using the Dutch Pathology Registry (PALGA) and the Netherlands Cancer Registry. All cases were histologically reviewed and a subset was subjected to a comprehensive next generation sequencing panel. We assessed mutations and gene amplifications in a panel of 54 actionable genes, tumor-mutational burden (TMB), and microsatellite instability (MSI). Additionally, the entire cohort was screened for HER2, PD-L1, pan-TRK, and p53 expression with immunohistochemistry. Histopathological subtypes comprised biliary-type adenocarcinoma (AC, 69.6%), intestinal-type AC (20.1%) and other subtypes (10.3%). The median total TMB was 5.5 mutations/Mb (range: 0–161.1) and 17.7% of evaluable cases had a TMB of >10 mutations/Mb. MSI was observed in two cases. Apart from mutations in TP53 (64%), tumors were molecularly highly heterogeneous. Half of the tumors (50%) carried at least one molecular alteration that is targetable in other tumor types, including alterations in CDKN2A (6.0% biallelically inactivated), ERBB2 (9.3%) and PIK3CA (10%). Immunohistochemistry results correlated well with NGS results for HER2 and p53: Pearson r = 0.82 and 0.83, respectively. As half of GBC patients carry at least one potentially actionable molecular alteration, molecular testing may open the way to explore targeted therapy options for GBC patients.
Collapse
|
4
|
Kuipers H, de Bitter TJJ, de Boer MT, van der Post RS, Nijkamp MW, de Reuver PR, Fehrmann RSN, Hoogwater FJH. Gallbladder Cancer: Current Insights in Genetic Alterations and Their Possible Therapeutic Implications. Cancers (Basel) 2021; 13:5257. [PMID: 34771420 PMCID: PMC8582530 DOI: 10.3390/cancers13215257] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
Due to the fast progression in molecular technologies such as next-generation sequencing, knowledge of genetic alterations in gallbladder cancer (GBC) increases. This systematic review provides an overview of frequently occurring genetic alterations occurring in GBC and their possible therapeutic implications. A literature search was performed utilizing PubMed, EMBASE, Cochrane Library, and Web of Science. Only studies reporting genetic alterations in human GBC were included. In total, data were extracted from 62 articles, describing a total of 3893 GBC samples. Frequently detected genetic alterations (>5% in >5 samples across all studies) in GBC for which targeted therapies are available in other cancer types included mutations in ATM, ERBB2, and PIK3CA, and ERBB2 amplifications. High tumor mutational burden (TMB-H) and microsatellite instability (MSI-H) were infrequently observed in GBC (1.7% and 3.5%, respectively). For solid cancers with TMB-H or MSI-H pembrolizumab is FDA-approved and shows an objective response rates of 50% for TMB-H GBC and 41% for MSI-H biliary tract cancer. Only nine clinical trials evaluated targeted therapies in GBC directed at frequently altered genes (ERBB2, ARID1A, ATM, and KRAS). This underlines the challenges to perform such clinical trials in this rare, heterogeneous cancer type and emphasizes the need for multicenter clinical trials.
Collapse
Affiliation(s)
- Hendrien Kuipers
- Department of Surgery, Section Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.d.B.); (M.W.N.)
| | - Tessa J. J. de Bitter
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (T.J.J.d.B.); (R.S.v.d.P.)
| | - Marieke T. de Boer
- Department of Surgery, Section Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.d.B.); (M.W.N.)
| | - Rachel S. van der Post
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (T.J.J.d.B.); (R.S.v.d.P.)
| | - Maarten W. Nijkamp
- Department of Surgery, Section Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.d.B.); (M.W.N.)
| | - Philip R. de Reuver
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Frederik J. H. Hoogwater
- Department of Surgery, Section Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.T.d.B.); (M.W.N.)
| |
Collapse
|
5
|
Tan ES, Cao B, Kim J, Al-Toubah TE, Mehta R, Centeno BA, Kim RD. Phase 2 study of copanlisib in combination with gemcitabine and cisplatin in advanced biliary tract cancers. Cancer 2020; 127:1293-1300. [PMID: 33289918 DOI: 10.1002/cncr.33364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Biliary tract cancer (BTC) has a poor prognosis despite treatment with first-line gemcitabine and cisplatin. In BTC, PI3K/AKT pathway activation has been shown to increase resistance to chemotherapy, which may be overcome with PI3K inhibition. This phase 2 study evaluated the safety and efficacy of copanlisib, a PI3K inhibitor, with gemcitabine and cisplatin in advanced BTCs. The role of PTEN expression in outcomes was also explored. METHODS Patients with advanced/unresectable BTC received gemcitabine, cisplatin, and copanlisib as their first-line treatment. The primary endpoint was progression-free survival (PFS) at 6 months. Secondary endpoints were the response rate (RR), median overall survival (OS)/PFS, and safety profile. An assessment of PTEN expression by immunohistochemistry was also performed along with molecular profiling. RESULTS Twenty-four patients received at least 1 dose of the study drug. The PFS rate at 6 months was 51%; the median OS was 13.7 months (95% CI, 6.8-18.0 months), and the median PFS was 6.2 months (95% CI, 2.9-10.1 months). Nineteen patients were evaluable for RR: 6 patients achieved a partial response (31.6%), and 11 (57.9%) had stable disease. The most common grade 3/4 adverse events were a decreased neutrophil count (45.83%), anemia (25%), increased lipase (25%), and hypertension (20.8%). Twenty patients had tissue evaluable for the PTEN status. The PFS for low (n = 9) and high PTEN expression (n = 11) was 8.5 and 4.6 months, respectively (P = .19). The median OS for low and high PTEN expression groups was 17.9 and 7.0 months, respectively (P = .19). CONCLUSIONS The addition of copanlisib to gemcitabine and cisplatin does not improve PFS at 6 months. However, future studies using PTEN as a potential biomarker should be considered. LAY SUMMARY The addition of copanlisib, a PI3K inhibitor, to standard chemotherapy for advanced biliary tract cancers was assessed for efficacy and safety. Twenty-four patients with advanced biliary tract cancer received treatment in this study. There was no difference in survival with the addition of copanlisib in comparison with standard chemotherapy. Copanlisib may be more effective and increase survival in patients with low PTEN expression levels. Further studies are needed to confirm this. No unexpected adverse events occurred.
Collapse
Affiliation(s)
- Elaine S Tan
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Taymeyah E Al-Toubah
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Rutika Mehta
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Barbara A Centeno
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Richard D Kim
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
6
|
Tulsyan S, Hussain S, Mittal B, Saluja SS, Tanwar P, Rath GK, Goodman M, Kaur T, Mehrotra R. A systematic review with in silico analysis on transcriptomic profile of gallbladder carcinoma. Semin Oncol 2020; 47:398-408. [DOI: 10.1053/j.seminoncol.2020.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
|
7
|
Jiang TY, Feng XF, Fang Z, Cui XW, Lin YK, Pan YF, Yang C, Ding ZW, Zhang YJ, Tan YX, Wang HY, Dong LW. PTEN deficiency facilitates the therapeutic vulnerability to proteasome inhibitor bortezomib in gallbladder cancer. Cancer Lett 2020; 501:187-199. [PMID: 33220333 DOI: 10.1016/j.canlet.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Gallbladder cancer (GBC) is an aggressive malignancy of biliary tract with poor prognosis. Although several studies have shown the frequency of relevant genetic alterations, there are few genetic models or translational studies that really benefit for GBC treatment in the era of precision medicine. By targeted sequencing and immunohistochemistry staining, we identified that phosphate and tension homology deleted on chromosome ten (PTEN) was frequently altered in GBC specimens, and loss of PTEN expression was independently correlated with poor survival outcomes. Further drug screening assays revealed proteasome inhibitor bortezomib as a promising agent for GBC treatment, and knockdown of PTEN increased bortezomib efficacy both in vivo and in vitro. Therapeutic evaluation of patient derived xenografts (PDXs) strongly supported the utilization of bortezomib in PTEN deficient GBC. Mechanically, functional PTEN inhibited ARE-dependent transcriptional activity, the same machinery regulating the transcription of proteasome subunits, thus PTEN suppressed proteasome activity and bortezomib sensitivity. Through siRNA screening, we identified the ARE-related transcriptional suppressor BACH1 involved in PTEN-mediated proteasome inhibition and regulated by PTEN-AKT1 axis. In summary, our study indicates that proteasome activity represents a prime therapeutic target in PTEN-deficient GBC tumors, which is worthy of further clinical validation.
Collapse
Affiliation(s)
- Tian-Yi Jiang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, 201805, China
| | - Xiao-Fan Feng
- National Center for Liver Cancer, Shanghai, 201805, China
| | - Zheng Fang
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China; The 904 Hospital of Joint Service Support Force, PLA, Wuxi, 213000, PR China
| | - Xiao-Wen Cui
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, 201805, China
| | - Yun-Kai Lin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, 201805, China
| | - Yu-Fei Pan
- National Center for Liver Cancer, Shanghai, 201805, China
| | - Chun Yang
- Children's Hospital of Soochow University, Suzhou, 215025, PR China
| | - Zhi-Wen Ding
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yong-Jie Zhang
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Ye-Xiong Tan
- National Center for Liver Cancer, Shanghai, 201805, China; Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, The Second Military Medical University & Ministry of Education, Shanghai, 200438, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Shanghai, 201805, China; Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, The Second Military Medical University & Ministry of Education, Shanghai, 200438, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai, 200438, China; Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, The Second Military Medical University & Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
8
|
Sun MX, He XP, Huang PY, Qi Q, Sun WH, Liu GS, Hua J. Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway. World J Gastroenterol 2020; 26:5822-5835. [PMID: 33132637 PMCID: PMC7579763 DOI: 10.3748/wjg.v26.i38.5822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors of the digestive system worldwide, posing a serious danger to human health. Cyclooxygenase (COX)-2 plays an important role in the carcinogenesis and progression of gastric cancer. Acetyl-11-keto-β-boswellic acid (AKBA) is a promising drug for cancer therapy, but its effects and mechanism of action on human gastric cancer remain unclear.
AIM To evaluate whether the phosphatase and tensin homolog (PTEN)/Akt/COX-2 signaling pathway is involved in the anti-tumor effect of AKBA in gastric cancer.
METHODS Human poorly differentiated BGC823 and moderately differentiated SGC7901 gastric cancer cells were routinely cultured in Roswell Park Memorial Institute 1640 medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Gastric cancer cell proliferation was determined by methyl thiazolyl tetrazolium colorimetric assay. Apoptosis was measured by flow cytometry. Cell migration was assessed using the wound-healing assay. Expression of Bcl-2, Bax, proliferating cell nuclear antigen, PTEN, p-Akt, and COX-2 were detected by Western blot analysis. A xenograft nude mouse model of human gastric cancer was established to evaluate the anti-cancer effect of AKBA in vivo.
RESULTS AKBA significantly inhibited the proliferation of gastric cancer cells in a dose- and time-dependent manner, inhibited migration in a time-dependent manner, and induced apoptosis in a dose-dependent manner in vitro; it also inhibited tumor growth in vivo. AKBA up-regulated the expression of PTEN and Bax, and down-regulated the expression of proliferating cell nuclear antigen, Bcl-2, p-Akt, and COX-2 in a dose-dependent manner. The PTEN inhibitor bpv (Hopic) reversed the high expression of PTEN and low expression of p-Akt and COX-2 that were induced by AKBA. The Akt inhibitor MK2206 combined with AKBA down- regulated the expression of p-Akt and COX-2, and the combined effect was better than that of AKBA alone.
CONCLUSION AKBA inhibits the proliferation and migration and promotes the apoptosis of gastric cancer cells through the PTEN/Akt/COX-2 signaling pathway.
Collapse
Affiliation(s)
- Meng-Xue Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Xiao-Pu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Pei-Yun Huang
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Qi Qi
- Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Wei-Hao Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Gao-Shuang Liu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
9
|
Sivade A, Sempoux C, Voutsadakis I, Brunel C, Halkic N, Godat S, Duran R, Digklia A. Synchronous tumors of the pancreas and the gallbladder: a case report with targeted NGS evaluation. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:696. [PMID: 31930097 DOI: 10.21037/atm.2019.10.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synchronous tumors of the pancreas and gallbladder are rare and often attributed to an abnormal pancreato-biliary junction, which results in a persistent reflux of pancreatic secretions leading to chronic biliary inflammation. We present the case of a 73-year-old woman with synchronous lesions of the pancreas and gallbladder initially considered as two primary localized cancers and treated with curative intent. At relapse, targeted next generation sequencing (NGS), performed in search of potential therapeutic targets, uncovered the fact that the two lesions appeared to be clonally related. This case illustrates the problem of synchronous lesions of the pancreas and gallbladder. New pathologic assessments with comparative molecular analysis of mutational profiles may be helpful in this context.
Collapse
Affiliation(s)
- Aurelie Sivade
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Department of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ioannis Voutsadakis
- Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Christophe Brunel
- Department of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nermin Halkic
- Department of Visceral Surgery, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sebastian Godat
- Department of Gastroenterology, Section of Internal Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Mishra SK, Kumari N, Krishnani N. Molecular pathogenesis of gallbladder cancer: An update. Mutat Res 2019; 816-818:111674. [PMID: 31330366 DOI: 10.1016/j.mrfmmm.2019.111674] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/17/2023]
Abstract
Gallbladder carcinoma (GBC) is the most aggressive gastrointestinal malignancy throughout the world, with wide geographical variance. It is the subtype of biliary tract malignancy that has the poorest prognosis and lower survival among all biliary tract malignancies. Various factors are associated with GBC pathogenesis such as environmental, microbial, metabolic and molecular. Chronic inflammation of gallbladder due to presence of gallstone or microbial infection (eg. Salmonella or H. pylori) results in sustained production of inflammatory mediators in the tissue microenvironment, which can cause genomic changes linked to carcinogenesis. Genetic alterations are one of the major factors, associated with aggressiveness and prognosis. Researches have been done to explore suitable biomarker for early diagnosis and identify altered molecular pathways to develop appropriate biomarkers for early diagnosis, therapy and predicting prognosis. Different agents for targeted therapy against actionable mutations of molecules like EGFR, VEGF, mTOR, HER2, PDL-1, PD-1, MET, PI3K, N-cadherin, VEGFR, MEK1 and MEK2 are being tried. Despite these advancements, there is dismal improvement in the survival of GBC patients. Genetic aberrations other than actionable mutations and epigenetic modification including aberrant expressions of micro-RNAs, are also being studied both as diagnostic biomarker and therapeutic targets. Complex pathogenesis of GBC still needs to be unfolded. In this review we focus on the molecular pathogenesis of GBC elucidated till date along with future directions that can be explored to achieve better management of GBC patients.
Collapse
Affiliation(s)
- Shravan Kumar Mishra
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Niraj Kumari
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Narendra Krishnani
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
11
|
Kaavya J, Mahalaxmi I, Devi SM, Santhy KS, Balachandar V. Targeting phosphoinositide-3-kinase pathway in biliary tract cancers: A remedial route? J Cell Physiol 2018; 234:8259-8273. [PMID: 30370571 DOI: 10.1002/jcp.27673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023]
Abstract
Biliary tract cancers (BTC) are aggressive tumours with a low survival rate. At the advent of the genomic era, various genetic mutations in cell signalling pathways have been incriminated in carcinogenesis. Genomic analysis studies have connected main components of the phosphoinositide-3-kinase (PI3K) signalling pathway to BTC. PI3K pathway playing a central role in cell signalling and being deregulated in various tumours has been studied as a target for chemotherapy. Novel compounds have also been identified in preclinical trials that specifically target the PI3K pathway in BTCs, but these studies have not accelerated to clinical use. These novel compounds can be examined in upcoming studies to validate them as potential therapeutic agents, as further research is required to combat the growing need for adjuvant chemotherapy to successfully battle this tumour type. Furthermore, these molecules could also be used along with gemcitabine, cisplatin and 5-fluorouracil to improve sensitivity of the tumour tissue to chemotherapy. This review focuses on the basics of PI3K signalling, genetic alterations of this pathway in BTCs and current advancement in targeting this pathway in BTCs. It emphasizes the need for gene-based drug screening in BTC. It may reveal various novel targets and drugs for amelioration of survival in patients with BTC and serve as a stepping stone for further research.
Collapse
Affiliation(s)
- Jayaramayya Kaavya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, India
| | - Iyer Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, India
| | | | - K S Santhy
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, India
| | - Vellingiri Balachandar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| |
Collapse
|
12
|
Muhammad JS, Khan MR, Ghias K. DNA methylation as an epigenetic regulator of gallbladder cancer: An overview. Int J Surg 2018; 53:178-183. [PMID: 29602013 DOI: 10.1016/j.ijsu.2018.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Abstract
Gallbladder cancer (GBC) is a lethal health issue affecting mostly the women in their middle-age. High incidence of GBC has been reported across the world specifically in Asian countries, India and Pakistan. The exact etiology remains unknown, although several risk factors and genetic aberrations involving mutations or epigenetic changes may be involved in gallbladder carcinogenesis. This article presents a review of the published literature mainly from the year 2003 onwards. The topic of main concerns was epigenetic regulation of GBC. All relevant studies identified were included and are described according to the aforementioned subheadings. In this review, we have discussed the role of DNA methylation in GBC, clinical implication and future prospects of biomarker development for early diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan.
| | | | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
13
|
Roseweir AK, Powell AGMT, Bennett L, Van Wyk HC, Park J, McMillan DC, Horgan PG, Edwards J. Relationship between tumour PTEN/Akt/COX-2 expression, inflammatory response and survival in patients with colorectal cancer. Oncotarget 2018; 7:70601-70612. [PMID: 27661110 PMCID: PMC5342577 DOI: 10.18632/oncotarget.12134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022] Open
Abstract
In patients with colorectal cancer (CRC), local and systemic inflammatory responses have been extensively reported to associate with cancer survival. However, the specific signalling pathways responsible for inflammatory responses are not clear. The PTEN/Akt pathway is a plausible candidate as it may play a role in mediating inflammation via COX-2, and has been associated with cancer progression. This study therefore examined the relationship between tumour PTEN/Akt/COX-2 expression, inflammatory responses and survival in CRC patients using a tissue microarray. In 201 CRC patients, activation of tumour-specific PTEN/Akt significantly associated with poorer CSS (12.0yrs v 7.3yrs, P=0.032), poorer differentiation (P=0.032), venous invasion (P=0.008) and peritoneal involvement (P=0.004). Patients were stratified for peri-nuclear expression of COX-2 to examine associations with inflammatory responses. In patients with absent peri-nuclear COX-2 expression, activation of tumour-specific PTEN/Akt significantly associated with poorer CSS (11.9yrs v 5.4yrs, P=0.001), poorer differentiation (P=0.018), venous invasion (P=0.003) and peritoneal involvement (P=0.001). However, no associations were seen with either the local or systemic inflammatory responses. In CRC patients, tumour-specific PTEN/Akt pathway activation was significantly associated with poorer CSS, particularly when peri-nuclear COX-2 expression was absent. However, activation of the PTEN/Akt pathway appears not to be responsible for the regulation of inflammatory responses.
Collapse
Affiliation(s)
- Antonia K Roseweir
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom.,Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Arfon G M T Powell
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom.,Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Lindsay Bennett
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Hester C Van Wyk
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - James Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, United Kingdom
| | - Joanne Edwards
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
14
|
Phase I dose-escalation study of copanlisib in combination with gemcitabine or cisplatin plus gemcitabine in patients with advanced cancer. Br J Cancer 2018; 118:462-470. [PMID: 29348486 PMCID: PMC5830590 DOI: 10.1038/bjc.2017.428] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Copanlisib is a pan-class I phosphatidylinositol 3-kinase (PI3K) inhibitor with predominant PI3K-α/δ activity that has demonstrated clinical activity and manageable safety when administered as monotherapy in a phase II study. Combination therapy may overcome compensatory signalling that could occur with PI3K pathway inhibition, resulting in enhanced inhibitory activity, and preclinical studies of copanlisib with gemcitabine have demonstrated potent anti-tumour activity in vivo. Methods: A phase I, open-label, dose-escalation study to evaluate the safety, tolerability and recommended phase II dose (RP2D) of copanlisib with gemcitabine or with cisplatin plus gemcitabine (CisGem) in patients with advanced malignancies, including an expansion cohort in patients with biliary tract cancer (BTC) at the RP2D of copanlisib plus CisGem. Copanlisib and gemcitabine were administered on days 1, 8 and 15 of a 28-day cycle; maximum tolerated dose (MTD) and RP2D of copanlisib were determined. Copanlisib plus CisGem was administered on days 1 and 8 of a 21-day cycle; pharmacokinetics and biomarkers were assessed. Results: Fifty patients received treatment as follows: dose-escalation cohorts, n=16; copanlisib plus CisGem cohort, n=14; and BTC expansion cohort, n=20. Copanlisib 0.8 mg kg−1 plus gemcitabine was the MTD and RP2D for both combinations. Common treatment-emergent adverse events included nausea (86%), hyperglycaemia (80%) and decreased platelet count (80%). Copanlisib exposure displayed a dose-proportional increase. No differences were observed upon co-administration of CisGem. Response rates were as follows: copanlisib plus gemcitabine, 6.3% (one partial response in a patient with peritoneal carcinoma); copanlisib plus CisGem, 12% (one complete response and three partial responses all in patients with BTC (response rate 17.4% in patients with BTC)). Mutations were detected in PIK3CA (1 out of 43), KRAS (10 out of 43) and BRAF (2 out of 22), with phosphate and tensin homologue protein loss in 41% (12 out of 29). Conclusions: Copanlisib plus CisGem demonstrated a manageable safety profile, favourable pharmacokinetics, and potentially promising clinical response.
Collapse
|
15
|
|