1
|
Boucher L, Sorel N, Desterke C, Chollet M, Rozalska L, Gallego Hernanz MP, Cayssials E, Raimbault A, Bennaceur-Griscelli A, Turhan AG, Chomel JC. Deciphering Potential Molecular Signatures to Differentiate Acute Myeloid Leukemia (AML) with BCR::ABL1 from Chronic Myeloid Leukemia (CML) in Blast Crisis. Int J Mol Sci 2023; 24:15441. [PMID: 37895120 PMCID: PMC10607477 DOI: 10.3390/ijms242015441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acute myeloid leukemia (AML) with BCR::ABL1 has recently been recognized as a distinct subtype in international classifications. Distinguishing it from myeloid blast crisis chronic myeloid leukemia (BC-CML) without evidence of a chronic phase (CP), remains challenging. We aimed to better characterize this entity by integrating clonal architecture analysis, mutational landscape assessment, and gene expression profiling. We analyzed a large retrospective cohort study including CML and AML patients. Two AML patients harboring a BCR::ABL1 fusion were included in the study. We identified BCR::ABL1 fusion as a primary event in one patient and a secondary one in the other. AML-specific variants were identified in both. Real-time RT-PCR experiments demonstrated that CD25 mRNA is overexpressed in advanced-phase CML compared to AML. Unsupervised principal component analysis showed that AML harboring a BCR::ABL1 fusion was clustered within AML. An AML vs. myeloid BC-CML differential expression signature was highlighted, and while ID4 (inhibitor of DNA binding 4) mRNA appears undetectable in most myeloid BC-CML samples, low levels are detected in AML samples. Therefore, CD25 and ID4 mRNA expression might differentiate AML with BCR::ABL1 from BC-CML and assign it to the AML group. A method for identifying this new WHO entity is then proposed. Finally, the hypothesis of AML with BCR::ABL1 arising from driver mutations on a BCR::ABL1 background behaving as a clonal hematopoiesis mutation is discussed. Validation of our data in larger cohorts and basic research are needed to better understand the molecular and cellular aspects of AML with a BCR::ABL1 entity.
Collapse
MESH Headings
- Humans
- Blast Crisis/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Retrospective Studies
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- RNA, Messenger
Collapse
Affiliation(s)
- Lara Boucher
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
| | - Nathalie Sorel
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
| | - Christophe Desterke
- Faculté de Médecine, Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France; (C.D.); (A.B.-G.); (A.G.T.)
| | - Mélanie Chollet
- CHU de Poitiers, Service d’Hématologie Biologique, F86000 Poitiers, France; (M.C.); (L.R.)
| | - Laura Rozalska
- CHU de Poitiers, Service d’Hématologie Biologique, F86000 Poitiers, France; (M.C.); (L.R.)
| | - Maria Pilar Gallego Hernanz
- CHU de Poitiers, Service d’Oncologie Hématologique et Thérapie Cellulaire, F86000 Poitiers, France; (M.P.G.H.); (E.C.)
- INSERM, CIC-P 1402, F86000 Poitiers, France
| | - Emilie Cayssials
- CHU de Poitiers, Service d’Oncologie Hématologique et Thérapie Cellulaire, F86000 Poitiers, France; (M.P.G.H.); (E.C.)
- INSERM, CIC-P 1402, F86000 Poitiers, France
| | - Anna Raimbault
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
- CHU de Poitiers, Service d’Hématologie Biologique, F86000 Poitiers, France; (M.C.); (L.R.)
| | - Annelise Bennaceur-Griscelli
- Faculté de Médecine, Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France; (C.D.); (A.B.-G.); (A.G.T.)
- INSERM U1310, F94807 Villejuif, France
- INGESTEM-ESTeam Paris Sud, F94800 Villejuif, France
- Service d’Onco-Hématologie, Hôpital Paul Brousse, AP-HP Université Paris Saclay, F94804 Villejuif, France
- Service d’Hématologie, Hôpital Bicêtre, AP-HP Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France
| | - Ali G. Turhan
- Faculté de Médecine, Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France; (C.D.); (A.B.-G.); (A.G.T.)
- INSERM U1310, F94807 Villejuif, France
- INGESTEM-ESTeam Paris Sud, F94800 Villejuif, France
- Service d’Onco-Hématologie, Hôpital Paul Brousse, AP-HP Université Paris Saclay, F94804 Villejuif, France
- Service d’Hématologie, Hôpital Bicêtre, AP-HP Université Paris Saclay, F94270 Le Kremlin-Bicêtre, France
| | - Jean-Claude Chomel
- CHU de Poitiers, Service de Cancérologie Biologique, F86000 Poitiers, France; (L.B.); (N.S.); (A.R.)
- INSERM U1310, F94807 Villejuif, France
| |
Collapse
|
2
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|