1
|
Xu B, Tang L, Huang W, Xie S, Ye J, Luo G. Meta-analysis of the adoption of omalizumab in the treatment of pediatric allergic diseases. Heliyon 2024; 10:e29365. [PMID: 38681537 PMCID: PMC11053211 DOI: 10.1016/j.heliyon.2024.e29365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Allergic diseases are common chronic conditions in children, omalizumab has a wide range of adoptions in various diseases. A meta-analysis was implemented to demonstrate the efficacy of omalizumab in the therapy of pediatric allergic diseases. Materials and methods English databases were searched. The search terms included "Omalizumab", "Children", "Allergic asthma", and "Atopic dermatitis". The literature was screened regarding inclusion and exclusion criteria, and data were extracted and analyzed using RevMan5.3. Results a total of six suitable studies, comprising 2761 patients, were selected for inclusion. The meta-analysis results implied that at 24 weeks, OR for worsening of symptoms in children was 0.10 (95 % confidence interval [CI] 0.03-0.41), Z = 3.24, P = 0.001 (P < 0.05); at 52 weeks, OR was 0.27 (95 % CI 0.09-0.83), Z = 2.28, P = 0.02 (P < 0.05); and during treatment, OR for adverse events in children was 0.87 (95 % CI 0.60-1.29), Z = 0.68, P = 0.49 (P > 0.05). Conclusion the study comprised six investigations that examined the effectiveness of omalizumab in treating pediatric allergic diseases. The findings demonstrated that, in comparison to standard treatment, omalizumab can greatly alleviate allergy-related clinical symptoms in children, slow down disease progression, and has a higher safety profile with fewer adverse reactions. These results have practical implications and highlight the potential value of omalizumab in pediatric allergy treatment.
Collapse
Affiliation(s)
- Baihua Xu
- Department of Pediatric, Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, 523127, Guangdong Province, China
| | - Lingqun Tang
- Department of Pediatric, Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, 523127, Guangdong Province, China
| | - Wenzhen Huang
- Department of Pediatric, Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, 523127, Guangdong Province, China
| | - Shubin Xie
- Department of Pediatric, Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, 523127, Guangdong Province, China
| | - Jiaxin Ye
- Department of Pediatric, Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, 523127, Guangdong Province, China
| | - Guiping Luo
- Department of Pediatric, Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan, 523127, Guangdong Province, China
| |
Collapse
|
2
|
Qiu HR, Qiao C, Yang H, Guo R, Shi Y, Zhao XL, Li JY, Zhu Y. [ST13-PDGFRβ positive acute myeloid leukaemia: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:676-679. [PMID: 37803843 PMCID: PMC10520237 DOI: 10.3760/cma.j.issn.0253-2727.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 10/08/2023]
Affiliation(s)
- H R Qiu
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - C Qiao
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - H Yang
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - R Guo
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Y Shi
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - X L Zhao
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - J Y Li
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Y Zhu
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
3
|
Case of cryptic TNIP1::PDGFRB rearrangement presenting with myelodysplastic syndrome achieved hematologic and cytogenetic remission with low-dose imatinib plus decitabine therapy. Leuk Res Rep 2023; 19:100367. [PMID: 36968263 PMCID: PMC10036931 DOI: 10.1016/j.lrr.2023.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
For a long time, FIP1L1::PDGFRA fusion seems to be the only cryptic rearrangement of myeloid/lymphoid neoplasm with tyrosine kinase gene fusions. Recently, with the wide application of RNA sequencing, more cryptic rearrangements of other TK genes have been identified, especially the PDGFRB. Here we report a case of myelodysplastic syndrome with severe thrombocytopenia. Conventional karyotype analysis revealed a t (5;19) (q33; p13.2) but no PDGFRB rearrangement was detected by the PDGFRB break-apart probe. The TNIP1::PDGFRB fusion was eventually found by RNA sequencing, leading us to treat with low-dose imatinib plus decitabine, and the patient achieved hematologic improvement and cytogenetic remission.
Collapse
|
4
|
Di Giacomo D, Quintini M, Pierini V, Pellanera F, La Starza R, Gorello P, Matteucci C, Crescenzi B, Fiumara PF, Veltroni M, Borlenghi E, Albano F, Forghieri F, Maccaferri M, Bettelli F, Luppi M, Cuneo A, Rossi G, Mecucci C. Genomic and clinical findings in myeloid neoplasms with PDGFRB rearrangement. Ann Hematol 2021; 101:297-307. [PMID: 34859285 PMCID: PMC8742810 DOI: 10.1007/s00277-021-04712-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022]
Abstract
Platelet-derived growth factor receptor B (PDGFRB) gene rearrangements define a unique subgroup of myeloid and lymphoid neoplasms frequently associated with eosinophilia and characterized by high sensitivity to tyrosine kinase inhibition. To date, various PDGFRB/5q32 rearrangements, involving at least 40 fusion partners, have been reported. However, information on genomic and clinical features accompanying rearrangements of PDGFRB is still scarce. Here, we characterized a series of 14 cases with a myeloid neoplasm using cytogenetic, single nucleotide polymorphism array, and next-generation sequencing. We identified nine PDGFRB translocation partners, including the KAZN gene at 1p36.21 as a novel partner in a previously undescribed t(1;5)(p36;q33) chromosome change. In all cases, the PDGFRB recombination was the sole cytogenetic abnormality underlying the phenotype. Acquired somatic variants were mainly found in clinically aggressive diseases and involved epigenetic genes (TET2, DNMT3A, ASXL1), transcription factors (RUNX1 and CEBPA), and signaling modulators (HRAS). By using both cytogenetic and nested PCR monitoring to evaluate response to imatinib, we found that, in non-AML cases, a low dosage (100–200 mg) is sufficient to induce and maintain longstanding hematological, cytogenetic, and molecular remissions.
Collapse
Affiliation(s)
- Danika Di Giacomo
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Martina Quintini
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Roberta La Starza
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Paolo Gorello
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy.,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Caterina Matteucci
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Barbara Crescenzi
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | | | - Marinella Veltroni
- Department of Pediatric Oncology-Hematology, Meyer Children's Hospital, Florence, Italy
| | | | - Francesco Albano
- Hematology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Antonio Cuneo
- Hematology, Department of Medical Sciences, St. Anna University Hospital, 44124, Ferrara, Italy
| | | | - Cristina Mecucci
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy.
| |
Collapse
|
5
|
Zimmermann N, Abonia JP, Dreskin SC, Akin C, Bolton S, Happel CS, Geller M, Larenas-Linnemann D, Nanda A, Peterson K, Wasan A, Wechsler J, Zhang S, Bernstein JA. Developing a standardized approach for assessing mast cells and eosinophils on tissue biopsies: A Work Group Report of the AAAAI Allergic Skin Diseases Committee. J Allergy Clin Immunol 2021; 148:964-983. [PMID: 34384610 DOI: 10.1016/j.jaci.2021.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Mast cells and eosinophils are commonly found, expectedly or unexpectedly, in human tissue biopsies. Although the clinical significance of their presence, absence, quantity, and quality continues to be investigated in homeostasis and disease, there are currently gaps in knowledge related to what constitutes quantitatively relevant increases in mast cell and eosinophil number in tissue specimens for several clinical conditions. Diagnostically relevant thresholds of mast cell and eosinophil numbers have been proposed and generally accepted by the medical community for a few conditions, such as systemic mastocytosis and eosinophilic esophagitis. However, for other mast cell- and eosinophil-associated disorders, broad discrepancies remain regarding diagnostic thresholds and how samples are processed, routinely and/or specially stained, and interpreted and/or reported by pathologists. These discrepancies can obfuscate or delay a patient's correct diagnosis. Therefore, a work group was assembled to review the literature and develop a standardized consensus for assessing the presence of mast cells and eosinophils for a spectrum of clinical conditions, including systemic mastocytosis and cutaneous mastocytosis, mast cell activation syndrome, eosinophilic esophagitis, eosinophilic gastritis/enteritis, and hypereosinophilia/hypereosinophilic syndrome. The intent of this work group is to build a consensus among pathology, allergy, dermatology, hematology/oncology, and gastroenterology stakeholders for qualitatively and quantitatively assessing mast cells and eosinophils in skin, gastrointestinal, and bone marrow pathologic specimens for the benefit of clinical practice and patients.
Collapse
Affiliation(s)
- Nives Zimmermann
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - J Pablo Abonia
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Stephen C Dreskin
- Division of Allergy and Immunology, Department of Internal Medicine, University of Colorado, Aurora, Colo
| | - Cem Akin
- Division of Allergy and Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich
| | - Scott Bolton
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Corinne S Happel
- Division of Allergy and Immunology, Department of Internal Medicine, John Hopkins School of Medicine, Baltimore, Md
| | - Mario Geller
- Department of Medicine, the Academy of Medicine of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Anil Nanda
- Asthma and Allergy Center, Lewisville, Tex; Asthma and Allergy Center, Flower Mound, Tex; Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Kathryn Peterson
- Division of Gastroenterology, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Anita Wasan
- Division of Gastroenterology, Hepatology, and Nutrition, Allergy and Asthma Center, McLean, Va
| | - Joshua Wechsler
- Division of Allergy and Immunology, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | - Simin Zhang
- Allergy Section, Division of Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Jonathan A Bernstein
- Allergy Section, Division of Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
6
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Gerds AT, Gotlib J, Bose P, Deininger MW, Dunbar A, Elshoury A, George TI, Gojo I, Gundabolu K, Hexner E, Hobbs G, Jain T, Jamieson C, Kuykendall AT, McMahon B, Mohan SR, Oehler V, Oh S, Pardanani A, Podoltsev N, Ranheim E, Rein L, Salit R, Snyder DS, Stein BL, Talpaz M, Thota S, Vachhani P, Wadleigh M, Walsh K, Ward DC, Bergman MA, Sundar H. Myeloid/Lymphoid Neoplasms with Eosinophilia and TK Fusion Genes, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18:1248-1269. [PMID: 32886902 DOI: 10.6004/jnccn.2020.0042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eosinophilic disorders and related syndromes represent a heterogeneous group of neoplastic and nonneoplastic conditions, characterized by more eosinophils in the peripheral blood, and may involve eosinophil-induced organ damage. In the WHO classification of myeloid and lymphoid neoplasms, eosinophilic disorders characterized by dysregulated tyrosine kinase (TK) fusion genes are recognized as a new category termed, myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB or FGFR1 or with PCM1-JAK2. In addition to these aforementioned TK fusion genes, rearrangements involving FLT3 and ABL1 genes have also been described. These new NCCN Guidelines include recommendations for the diagnosis, staging, and treatment of any one of the myeloid/lymphoid neoplasms with eosinophilia (MLN-Eo) and a TK fusion gene included in the 2017 WHO Classification, as well as MLN-Eo and a FLT3 or ABL1 rearrangement.
Collapse
Affiliation(s)
- Aaron T Gerds
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | | | | | - Ivana Gojo
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | - Tania Jain
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | - Vivian Oehler
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Stephen Oh
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | | | - Rachel Salit
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | | | - Katherine Walsh
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Dawn C Ward
- UCLA Jonsson Comprehensive Cancer Center; and
| | | | | |
Collapse
|