1
|
La Salvia A, Meyer ML, Hirsch FR, Kerr KM, Landi L, Tsao MS, Cappuzzo F. Rediscovering immunohistochemistry in lung cancer. Crit Rev Oncol Hematol 2024; 200:104401. [PMID: 38815876 DOI: 10.1016/j.critrevonc.2024.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
Several observations indicate that protein expression analysis by immunohistochemistry (IHC) remains relevant in individuals with non-small-cell lung cancer (NSCLC) when considering targeted therapy, as an early step in diagnosis and for therapy selection. Since the advent of next-generation sequencing (NGS), the role of IHC in testing for NSCLC biomarkers has been forgotten or ignored. We discuss how protein-level investigations maintain a critical role in defining sensitivity to lung cancer therapies in oncogene- and non-oncogene-addicted cases and in patients eligible for immunotherapy, suggesting that IHC testing should be reconsidered in clinical practice. We also argue how a panel of IHC tests should be considered complementary to NGS and other genomic assays. This is relevant to current clinical diagnostic practice but with potential future roles to optimize the selection of patients for innovative therapies. At the same time, strict validation of antibodies, assays, scoring systems, and intra- and interobserver reproducibility is needed.
Collapse
Affiliation(s)
- Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome 00161, Italy
| | - May-Lucie Meyer
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith M Kerr
- Aberdeen University School of Medicine & Aberdeen Royal Infirmary, Aberdeen, UK
| | - Lorenza Landi
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy
| | - Ming-Sound Tsao
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Federico Cappuzzo
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy.
| |
Collapse
|
2
|
Hernandez S, Conde E, Molero A, Suarez-Gauthier A, Martinez R, Alonso M, Plaza C, Camacho C, Chantada D, Juaneda-Magdalena L, Garcia-Toro E, Saiz-Lopez P, Rojo F, Abad M, Boni V, Del Carmen S, Regojo RM, Sanchez-Frias ME, Teixido C, Paz-Ares L, Lopez-Rios F. Efficient Identification of Patients With NTRK Fusions Using a Supervised Tumor-Agnostic Approach. Arch Pathol Lab Med 2024; 148:318-326. [PMID: 37270803 DOI: 10.5858/arpa.2022-0443-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— The neurotrophic tropomyosin receptor kinase (NTRK) family gene rearrangements have been recently incorporated as predictive biomarkers in a "tumor-agnostic" manner. However, the identification of these patients is extremely challenging because the overall frequency of NTRK fusions is below 1%. Academic groups and professional organizations have released recommendations on the algorithms to detect NTRK fusions. The European Society for Medical Oncology proposal encourages the use of next-generation sequencing (NGS) if available, or alternatively immunohistochemistry (IHC) could be used for screening with NGS confirmation of all positive IHC results. Other academic groups have included histologic and genomic information in the testing algorithm. OBJECTIVE.— To apply some of these triaging strategies for a more efficient identification of NTRK fusions within a single institution, so pathologists can gain practical insight on how to start looking for NTRK fusions. DESIGN.— A multiparametric strategy combining histologic (secretory carcinomas of the breast and salivary gland; papillary thyroid carcinomas; infantile fibrosarcoma) and genomic (driver-negative non-small cell lung carcinomas, microsatellite instability-high colorectal adenocarcinomas, and wild-type gastrointestinal stromal tumors) triaging was put forward. RESULTS.— Samples from 323 tumors were stained with the VENTANA pan-TRK EPR17341 Assay as a screening method. All positive IHC cases were simultaneously studied by 2 NGS tests, Oncomine Comprehensive Assay v3 and FoundationOne CDx. With this approach, the detection rate of NTRK fusions was 20 times higher (5.57%) by only screening 323 patients than the largest cohort in the literature (0.30%) comprising several hundred thousand patients. CONCLUSIONS.— Based on our findings, we propose a multiparametric strategy (ie, "supervised tumor-agnostic approach") when pathologists start searching for NTRK fusions.
Collapse
Affiliation(s)
- Susana Hernandez
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Esther Conde
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| | - Aida Molero
- the Department of Pathology, Segovia General Hospital, Segovia, Spain (Molero)
| | - Ana Suarez-Gauthier
- the Department of Pathology, Jimenez Diaz Foundation University Hospital, Madrid, Spain (Suarez-Gauthier)
| | - Rebeca Martinez
- the Department of Pathology, Health Diagnostic-Grupo Quiron Salud, Madrid, Spain (Martinez)
| | - Marta Alonso
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Carlos Plaza
- the Department of Pathology, Clinico San Carlos University Hospital, Madrid, Spain (Plaza)
| | - Carmen Camacho
- the Department of Pathology, Insular Materno-Infantil University Hospital, Las Palmas de Gran Canaria, Spain (Camacho)
| | - Debora Chantada
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Laura Juaneda-Magdalena
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Enrique Garcia-Toro
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Patricia Saiz-Lopez
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Federico Rojo
- the Institute of Health Research-Jimenez Diaz Foundation, CIBERONC, Madrid, Spain (Rojo)
| | - Mar Abad
- the Department of Pathology, Salamanca University Hospital, Salamanca, Spain (Abad)
| | - Valentina Boni
- NEXT Oncology Madrid, Quiron Salud Madrid University Hospital, Madrid, Spain (Boni)
| | - Sofia Del Carmen
- the Department of Pathology, Marques de Valdecilla University Hospital, Santander, Spain (del Carmen)
| | - Rita Maria Regojo
- the Department of Pathology, La Paz University Hospital, Madrid, Spain (Regojo)
| | | | - Cristina Teixido
- the Department of Pathology, Thoracic Oncology Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain (Teixido)
| | - Luis Paz-Ares
- the Department of Oncology, 12 de Octubre University Hospital, Department of Medicine, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Paz-Ares)
| | - Fernando Lopez-Rios
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| |
Collapse
|
3
|
Karakas C, Giampoli EJ, Love T, Hicks DG, Velez MJ. Validation and interpretation of Pan-TRK immunohistochemistry: a practical approach and challenges with interpretation. Diagn Pathol 2024; 19:10. [PMID: 38200576 PMCID: PMC10777531 DOI: 10.1186/s13000-023-01426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Actionable, solid tumor activating neurotrophic receptor tyrosine kinase (NTRK) fusions are best detected via nucleic acid-based assays, while Pan-TRK immunohistochemistry (IHC) serves as a reasonable screening modality. We describe a practical and cost-effective approach to validate pan-TRK and discuss challenges that may be encountered. METHODS Pan-TRK Clone EPR17341 was validated in accordance with the 2014 consensus statements set forth by the College of American Pathologists. Confirmation of IHC results were guided by the European Society of Medical Oncology recommendations for standard methods to detect NTRK fusions. RESULTS Within 36 samples, ETV6-NTRK3 (n = 8) and TPM4-NTRK3 (n = 1) fusions were confirmed. ETV6-NTRK3 fusion positive cases revealed cytoplasmic and nuclear staining. A TPM4-NTRK3 fusion positive high grade malignant peripheral nerve sheath tumor revealed diffuse cytoplasmic staining. A high grade ovarian serous carcinoma revealed focal punctate staining and revealed a non-actionable NTRK1 truncation at intron 2. Diffuse cytoplasmic staining was observed in a case of fusion-negative polymorphous adenocarcinoma. Wild-type expression of TRK in pulmonary meningothelial-like nodules was discovered following a false-positive IHC interpretation. CONCLUSION Pan-TRK IHC shows some utility as a diagnostic and surrogate marker for NTRK screening however, physiologic or non-specific expression may lead to false-positive results.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ellen J Giampoli
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tanzy Love
- Department of Biostatistics and Computation Biology, University of Rochester, Rochester, NY, USA
| | - David G Hicks
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Moises J Velez
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Hyrcza MD, Martins-Filho SN, Spatz A, Wang HJ, Purgina BM, Desmeules P, Park PC, Bigras G, Jung S, Cutz JC, Xu Z, Berman DM, Sheffield BS, Cheung CC, Leduc C, Hwang DM, Ionescu D, Klonowski P, Chevarie-Davis M, Chami R, Lo B, Stockley TL, Tsao MS, Torlakovic E. Canadian Multicentric Pan-TRK (CANTRK) Immunohistochemistry Harmonization Study. Mod Pathol 2024; 37:100384. [PMID: 37972928 DOI: 10.1016/j.modpat.2023.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Tumor-agnostic testing for NTRK1-3 gene rearrangements is required to identify patients who may benefit from TRK inhibitor therapies. The overarching objective of this study was to establish a high-quality pan-TRK immunohistochemistry (IHC) screening assay among 18 large regional pathology laboratories across Canada using pan-TRK monoclonal antibody clone EPR17341 in a ring study design. TRK-fusion positive and negative tumor samples were collected from participating sites, with fusion status confirmed by panel next-generation sequencing assays. Each laboratory received: (1) unstained sections from 30 cases of TRK-fusion-positive or -negative tumors, (2) 2 types of reference standards: TRK calibrator slides and IHC critical assay performance controls (iCAPCs), (3) EPR17341 antibody, and (4) suggestions for developing IHC protocols. Participants were asked to optimize the IHC protocol for their instruments and detection systems by using iCAPCs, to stain the 30 study cases, and to report the percentage scores for membranous, cytoplasmic, and nuclear staining. TRK calibrators were used to assess the analytical sensitivity of IHC protocols developed by using the 2 reference standards. Fifteen of 18 laboratories achieved diagnostic sensitivity of 100% against next-generation sequencing. The diagnostic specificity ranged from 40% to 90%. The results did not differ significantly between positive scores based on the presence of any type of staining vs the presence of overall staining in ≥1% of cells. The median limit of detection measured by TRK calibrators was 76,000 molecules/cell (range 38,000 to >200,000 molecules/cell). Three different patterns of staining were observed in 19 TRK-positive cases, cytoplasmic-only in 7 samples, nuclear and cytoplasmic in 9 samples, and cytoplasmic and membranous in 3 samples. The Canadian multicentric pan-TRK study illustrates a successful strategy to accelerate the multicenter harmonization and implementation of pan-TRK immunohistochemical screening that achieves high diagnostic sensitivity by using laboratory-developed tests where laboratories used centrally developed reference materials. The measurement of analytical sensitivity by using TRK calibrators provided additional insights into IHC protocol performance.
Collapse
Affiliation(s)
- Martin D Hyrcza
- Department of Pathology and Laboratory Medicine, University of Calgary, Arnie Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Sebastiao N Martins-Filho
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alan Spatz
- McGill University Health Center, Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Han-Jun Wang
- McGill University Health Center, Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Bibianna M Purgina
- Department of Pathology and Laboratory Medicine, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrice Desmeules
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Paul C Park
- Shared Health, Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sungmi Jung
- Department of Pathology, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Jean-Claude Cutz
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhaolin Xu
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Brandon S Sheffield
- Department of Pathology, William Osler Health System, Brampton, Ontario, Canada
| | - Carol C Cheung
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Charles Leduc
- Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - David M Hwang
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Diana Ionescu
- Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Klonowski
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine Diagnostic and Scientific Centre, Calgary, Alberta, Canada
| | - Myriam Chevarie-Davis
- Département de Pathologie et Biologie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | - Rose Chami
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bryan Lo
- Department of Pathology and Laboratory Medicine, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Tracy L Stockley
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Emina Torlakovic
- Department of Pathology and Laboratory Medicine, Royal University Hospital, Saskatchewan Health Authority, and College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
5
|
Conde E, Hernandez S, Alonso M, Lopez-Rios F. Pan-TRK Immunohistochemistry to Optimize the Detection of NTRK Fusions: Removing the Hay When Looking for the Needle. Mod Pathol 2023; 36:100346. [PMID: 37757968 DOI: 10.1016/j.modpat.2023.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Esther Conde
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Madrid, Spain
| | - Susana Hernandez
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Alonso
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Fernando Lopez-Rios
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Madrid, Spain.
| |
Collapse
|
6
|
Adam J, Stang NL, Uguen A, Badoual C, Chenard MP, Lantuéjoul S, Maran-Gonzalez A, Robin YM, Rochaix P, Sabourin JC, Soubeyran I, Sturm N, Svrcek M, Vincent-Salomon A, Radosevic-Robin N, Penault-Llorca F. Multicenter Harmonization Study of Pan-Trk Immunohistochemistry for the Detection of NTRK3 Fusions. Mod Pathol 2023; 36:100192. [PMID: 37084942 DOI: 10.1016/j.modpat.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Pan-Trk immunohistochemistry has been described as a screening test for the detection of NTRK fusions in a broad spectrum of tumor types. However, pan-Trk testing in the clinical setting may be limited by many factors, including analytical parameters such as clones, platforms, and protocols used. This study aimed to harmonize pan-Trk testing using various clones and immunohistochemical (IHC) platforms and to evaluate the level of analytical variability across pathology laboratories. We developed several IHC pan-Trk assays using clones EPR17341 (Abcam) and A7H6R (Cell Signaling Technology) on Ventana/Roche, Agilent, and Leica platforms. To compare them, we sent unstained sections of a tissue microarray containing 9 cases with NTRK3 fusions to participating laboratories, to perform staining on Ventana/Roche (10 centers), Agilent (4 centers), and Leica (3 centers) platforms. A ready-to-use pan-Trk IVD assay (Ventana/Roche) was also performed in 3 centers. All slides were centrally and blindly reviewed for the percentage of stained tumor cells. Laboratory-developed tests with clone EPR17341 were able to detect pan-Trk protein expression in all cases, whereas lower rates of positivity were observed with clone A7H6R. Moderate to strong variability of the positive cases rate was observed with both antibodies in each IHC platforms type and each of the positivity cut points evaluated (≥1%, ≥10%, and ≥50% of stained tumor cells). The rate of false-negative cases was lower when pan-Trk staining was assessed with the lowest positivity threshold (≥1%). In conclusion, most evaluated pan-Trk IHC laboratory-developed tests were able to detect NTRK3-fusion proteins; however, a significant analytical variability was observed between antibodies, platforms, and centers.
Collapse
Affiliation(s)
- Julien Adam
- Pathology Department, Groupe Hospitalier Paris Saint-Joseph, Paris, and Inserm U1186, Gustave Roussy, Villejuif, France.
| | - Nolwenn Le Stang
- National Reference Center Mesopath, Centre Leon Berard, Lyon, France; Now with General Cancer Registry of Poitou-Charentes, Biology, Pharmacy and Public Health Unit, University Hospital, Poitiers, France
| | - Arnaud Uguen
- LBAI-UMR1227 - Inserm & Department of Pathology, CHU de Brest, Université de Brest, Brest, France
| | | | | | - Sylvie Lantuéjoul
- Université de Grenoble Alpes, Grenoble and Pathology Department, Centre Leon Berard, Lyon, France
| | | | | | | | | | | | | | - Magali Svrcek
- Pathology Department, Hôpital Saint-Antoine, AP-HP, Paris, France
| | | | - Nina Radosevic-Robin
- Pathology Department, Centre Jean Perrin, Clermont-Ferrand, France; University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- Pathology Department, Centre Jean Perrin, Clermont-Ferrand, France; University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France
| |
Collapse
|
7
|
Wang J, Gong M, Xiong Z, Zhao Y, Xing D. ADAM19 and TUBB1 Correlate with Tumor Infiltrating Immune Cells and Predicts Prognosis in Osteosarcoma. Comb Chem High Throughput Screen 2023; 26:135-148. [PMID: 35388751 DOI: 10.2174/1386207325666220406112305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteosarcoma is the most common type of primary malignant bone tumor. INTRODUCTION This study aimed to explore potential key prognostic genes and their roles in osteosarcoma. METHODS Three microarray datasets for osteosarcoma were downloaded from the GEO database. Differentially expressed genes (DEGs) were screened by the Limma package. Functional enrichment analysis was performed based on DAVID, GeneMANIA, and Metascape databases. Prognostic value of DEGs was elevated by survival analysis. CIBERSORT was used to assess the infiltrating abundance of 22 immune cells, followed by the Pearson correlation analysis between immune cells and prognosis-related genes. Gene set enrichment analysis and drug-gene interactions prediction were performed for prognosis-related genes. RESULTS A total of 8 common up-regulated DEGs and 13 common down-regulated DEGs were screened in the GSE36001 and GSE56001 datasets. Enrichment analysis showed these DEGs were implicated in platelet activation, SMAD protein phosphorylation, lymphocyte/leukocyte/T cells activation, and cell migration. Survival analysis indicated that elevated expression of ADAM19 and TUBB1 were associated with a favorable prognosis. CIBERSORT algorithm revealed the higher infiltrating level of CD8 T cells, macrophages M0, and M2 in osteosarcoma. ADAM19 expression positively correlated with naïve B cells and negatively correlated with activated dendritic cells infiltrating abundance. TUBB1 expression positively correlated with gamma delta T cells while negatively correlated with helper follicular T cells infiltrating abundance. A total of 56 drugs were found to target TUBB1. CONCLUSION ADAM19 and TUBB1 could be prognostic biomarkers in osteosarcoma. Both their expression correlates with tumor infiltrating immune cells. TUBB1 was a multi-drug target that might be a therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Jun Wang
- Department of Orthopedics and Trauma, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Mingzhi Gong
- Department of Orthopedics and Trauma, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Zhenggang Xiong
- Department of Orthopedics and Trauma, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yangyang Zhao
- Department of Orthopedics and Trauma, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Deguo Xing
- Department of Orthopedics and Trauma, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| |
Collapse
|
8
|
Abstract
INTRODUCTION Neurotrophic tyrosine receptor kinase (NTRK) gene fusions occur in ~ 0.3% of all solid tumours but are enriched in some rare tumour types. Tropomyosin receptor kinase (TRK) inhibitors larotrectinib and entrectinib are approved as tumour-agnostic therapies for solid tumours harbouring NTRK fusions. METHODS This study investigated the prevalence of NTRK fusions in Canadian patients and also aimed to help guide NTRK testing paradigms through analysis of data reported from a national clinical diagnostic testing program between September 2019 and July 2021. RESULTS Of 1,687 patients included in the final analysis, NTRK fusions were detected in 0.71% (n = 12) of patients representing salivary gland carcinoma (n = 3), soft tissue sarcoma (n = 3), CNS (n = 3), and one in each of melanoma, lung, and colorectal cancer. All three salivary gland carcinomas contained ETV6-NTRK3 fusions. Thirteen (0.77%) clinically actionable incidental findings were also detected. Two of the 13 samples containing incidental findings were NTRK fusion-positive (GFOD1-NTRK2, FGFR3-TACC3 in a glioblastoma and AFAP1-NTRK2, BRAF c.1799T>A in a glioma). The testing algorithm screened most patient samples via pan-TRK immunohistochemistry (IHC), whereas samples from the central nervous system (CNS), pathognomonic cancers, and confirmed/ putative NTRK fusion-positive samples identified under research protocols were reflexed straight to next-generation sequencing (NGS). CONCLUSION These findings highlight the benefit and practicality of a diagnostic testing program to identify patients suitable for tumour-agnostic TRK inhibitor therapies, as well as other targeted therapies, due to clinically actionable incidental findings identified. Collectively, these findings may inform future guidance on selecting the appropriate testing approach per tumour type and on optimal NTRK testing algorithms.
Collapse
|