1
|
Moreira DC, Mikkelsen M, Robinson GW. Current Landscape of NTRK Inhibition for Pediatric CNS Tumors. CNS Drugs 2024; 38:841-849. [PMID: 39278868 DOI: 10.1007/s40263-024-01121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
Over the last decade, as molecular platforms have permitted the characterization of the genomic landscape of pediatric central nervous system (CNS) tumors, pediatric neuro-oncology has dramatically transformed. NTRK fusions are oncogenic driver alterations that have been found in a multitude of tumor types, including pediatric CNS tumors. In recent years, NTRK inhibitors have emerged as a promising class of targeted therapies for pediatric CNS tumors with NTRK gene fusions. The use of larotrectinib and entrectinib in the relapsed setting for pediatric CNS tumors has resulted in rapid and robust responses in an important fraction of patients. These agents are well tolerated, although close to 20% of patients have spontaneous bone fractures. Given the existing data for patients with relapsed disease, clinical trials using NTRK inhibitors in the upfront setting is the next natural progression of efficacy testing and many are currently underway. There are still several challenges that need to be addressed to optimize the use of NTRK inhibitors and identify the patients with NTRK fusion-positive CNS tumors who are most likely to benefit from them. As these agents are more broadly used, resistance will become a more pervasive issue and strategies will need to be determined for this scenario. This article summarizes the current status of NTRK inhibitors for pediatric CNS tumors and discusses the opportunities and challenges of their expanding use in the future.
Collapse
Affiliation(s)
- Daniel C Moreira
- Department of Oncology, St. Jude Children's Children Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
- Department of Global Pediatric Medicine, St. Jude Children's Children Research Hospital, Memphis, TN, USA
| | - Margit Mikkelsen
- Department of Oncology, St. Jude Children's Children Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Children Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA.
| |
Collapse
|
2
|
Church AJ, Wakefield CE, Hetherington K, Shern JF. Promise and Perils of Precision Oncology for Patients With Pediatric and Young Adult Sarcomas. Am Soc Clin Oncol Educ Book 2024; 44:e432794. [PMID: 38924707 DOI: 10.1200/edbk_432794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The completion of multiple national pediatric precision oncology platform trials and the incorporation of standardized molecular profiling into the diagnostic care of pediatric and young adult patients with sarcomas have proven the feasibility and potential of the approach. In this work, we explore the current state of the art of precision oncology for pediatric and young adults with sarcoma. We highlight important lessons learned and the challenges that should be addressed in the next generation of trials. The chapter outlines current efforts to improve standardization of molecular assays, harmonization of data collection, and novel molecular tools such as cell-free DNA analyses. Finally, we discuss the impacts and psychosocial outcomes experienced by patients and communication strategies for providers.
Collapse
Affiliation(s)
- Alanna J Church
- Department of Pathology, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Claire E Wakefield
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Kate Hetherington
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Judd S, Revon‐Riviere G, Grover SA, Deyell RJ, Vanan MI, Lewis VA, Pecheux L, Zorzi AP, Goudie C, Santiago R, Tran TH, Abbott LS, Brossard J, Moorehead P, Alvi S, Portwine C, Denburg A, Whitlock JA, Cohen‐Gogo S, Morgenstern DA. Access to innovative therapies in pediatric oncology: Report of the nationwide experience in Canada. Cancer Med 2024; 13:e7033. [PMID: 38400668 PMCID: PMC10891445 DOI: 10.1002/cam4.7033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The need for new therapies to improve survival and outcomes in pediatric oncology along with the lack of approval and accessible clinical trials has led to "out-of-trial" use of innovative therapies. We conducted a retrospective analysis of requests for innovative anticancer therapy in Canadian pediatric oncology tertiary centers for patients less than 30 years old between 2013 and 2020. METHODS Innovative therapies were defined as cancer-directed drugs used (a) off-label, (b) unlicensed drugs being used outside the context of a clinical trial, or (c) approved drugs with limited evidence in pediatrics. We excluded cytotoxic chemotherapy, cellular products, and cytokines. RESULTS We retrieved data on 352 innovative therapy drug requests. Underlying diagnosis was primary CNS tumor 31%; extracranial solid tumor 37%, leukemia/lymphoma 22%, LCH 2%, and plexiform neurofibroma 6%. RAS/MAP kinase pathway inhibitors were the most frequently requested innovative therapies in 28% of all requests followed by multi-targeted tyrosine kinase inhibitors (17%), inhibitors of the PIK3CA-mTOR-AKT pathway (8%), immune checkpoints inhibitors (8%), and antibody drug conjugates (8%). In 112 out of 352 requests, innovative therapies were used in combination with another anticancer agent. 48% of requests were motivated by the presence of an actionable molecular target. Compassionate access accounted for 52% of all requests while public insurance was used in 27%. Mechanisms of funding varied between provinces. CONCLUSION This real-world data collection illustrates an increasing use of "out-of-trial" innovative therapies in pediatric oncology. This new field of practice warrants further studies to understand the impact on patient trajectory and equity in access to innovative therapies.
Collapse
Affiliation(s)
- Sandra Judd
- Department of PharmacyHospital for Sick ChildrenTorontoOntarioCanada
| | - Gabriel Revon‐Riviere
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | | | - Rebecca J. Deyell
- Division of Pediatric Hematology Oncology BMTBC Children's Hospital and Research InstituteVancouverBritish ColumbiaCanada
| | - Magimairajan Issai Vanan
- Pediatric Neuro‐Oncology, Division of Pediatric Hematology‐Oncology, Cancer Care ManitobaUniversity of ManitobaWinnipegManitobaCanada
| | | | - Lucie Pecheux
- Stollery Children's HospitalUniversity of AlbertaEdmontonAlbertaCanada
| | - Alexandra P. Zorzi
- Department of Pediatrics, Children's Hospital London Health Sciences CentreWestern UniversityLondonOntarioCanada
| | - Catherine Goudie
- Department of Pediatrics, Division of Hematology‐Oncology, Montreal Children's HospitalMcGill University Health CentreQuébecCanada
| | - Raoul Santiago
- Department of Pediatrics, CHU de QuébecLaval UniversityQuébecCanada
| | - Thai Hoa Tran
- Division of Pediatric Hematology‐OncologyCharles‐Bruneau Cancer Center, CHU Sainte‐JustineMontrealQuébecCanada
| | - Lesleigh S. Abbott
- Division of Hematology/OncologyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Josee Brossard
- Department of PediatricsCHU de Sherbrooke, Univesité de SherbrookeSherbrookeQuébecCanada
| | - Paul Moorehead
- Department of Pediatrics, Janeway Children's Health and Rehabilitation CentreMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Saima Alvi
- Pediatric Hematology/Oncology, Jim Pattison Children's HospitalSaskatoonSaskatchewanCanada
| | - Carol Portwine
- McMaster Children's HospitalMcMaster UniversityHamiltonOntarioCanada
| | - Avram Denburg
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | - James A. Whitlock
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | - Sarah Cohen‐Gogo
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| | - Daniel A. Morgenstern
- Division of Haematology/Oncology, Hospital for Sick Children, Department of PediatricsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
4
|
Xiang S, Lu X. Selective type II TRK inhibitors overcome xDFG mutation mediated acquired resistance to the second-generation inhibitors selitrectinib and repotrectinib. Acta Pharm Sin B 2024; 14:517-532. [PMID: 38322338 PMCID: PMC10840435 DOI: 10.1016/j.apsb.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Neurotrophic receptor kinase (NTRK) fusions are actionable oncogenic drivers of multiple pediatric and adult solid tumors, and tropomyosin receptor kinase (TRK) has been considered as an attractive therapeutic target for "pan-cancer" harboring these fusions. Currently, two generations TRK inhibitors have been developed. The representative second-generation inhibitors selitrectinib and repotrectinib were designed to overcome clinic acquired resistance of the first-generation inhibitors larotrectinib or entrectinib resulted from solvent-front and gatekeeper on-target mutations. However, xDFG (TRKAG667C/A/S, homologous TRKCG696C/A/S) and some double mutations still confer resistance to selitrectinib and repotrectinib, and overcoming these resistances represents a major unmet clinical need. In this review, we summarize the acquired resistance mechanism of the first- and second-generation TRK inhibitors, and firstly put forward the emerging selective type II TRK inhibitors to overcome xDFG mutations mediated resistance. Additionally, we concluded our perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Helms L, Guimera AE, Janeway KA, Bailey KM. Innovations in Cancer Treatment of Children. Pediatrics 2023; 152:e2023061539. [PMID: 37920939 PMCID: PMC10657776 DOI: 10.1542/peds.2023-061539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 11/04/2023] Open
Abstract
Pediatric cancer outcomes have significantly improved, and yet this success is not spread equally across cancer types or patients. Disparities data in pediatric oncology highlight needed improvements in access to care, including clinical trials and advanced testing for all patients. For cancers such as brain tumors and sarcomas, continued advancement in understanding the biology of tumor heterogeneity is an essential step toward finding new therapeutic combinations to improve outcomes. Pediatric cancer survivors need access to emerging technologies aimed at reducing or better managing toxicities from therapy. With advances in treatment and survival, pediatric oncology patients continue to need longitudinal, multidisciplinary subspecialty care. Refining the communication between pediatric oncologists, primary pediatricians, survivorship clinics, and adult primary care is key in ensuring the best lifelong care of pediatric cancer survivors. In this State-of-The-Art review, we discuss 5 major domains in pediatric oncology: reducing toxicity, cancer biology, novel therapies, detection and monitoring, and access to care, to highlight recent advances and areas for continued improvement.
Collapse
Affiliation(s)
- Lauren Helms
- Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | - Allison E. Guimera
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California
| | - Katherine A. Janeway
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Kelly M. Bailey
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Yang AT, Laetsch TW. Safety of current treatment options for NTRK fusion-positive cancers. Expert Opin Drug Saf 2023; 22:1073-1089. [PMID: 37869783 PMCID: PMC10842066 DOI: 10.1080/14740338.2023.2274426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Oncogenic NTRK fusions have been found in multiple cancer types affecting adults and/or children, including rare tumors with pathognomonic fusions and common cancers in which fusions are rare. The tropomyosin receptor kinase inhibitors (TRKi) larotrectinib and entrectinib are among the first agents with tissue agnostic FDA approvals for cancer treatment, and additional TRKi are undergoing development. As experience with TRKi grow, novel mechanisms of resistance and on/off target side effects have become increasingly important considerations. AREAS COVERED Authors reviewed literature published through July 2023 on platforms such as PubMed, clinicaltrials.gov, and manufacturer/FDA drug labels, focusing on the development of TRKi, native functions of TRK, phenotype of congenital TRK aberrancies, efficacy, and safety profile of TRKi in clinical trials and investigator reports, and on/off target adverse effects associated with TRKi (Appendix A). EXPERT OPINION TRKi have histology-agnostic activity against tumors with NTRK gene fusions. TRKi are generally well tolerated with a side effect profile that compares favorably to cytotoxic chemotherapy. There are numerous ongoing studies investigating TRKi as frontline, adjuvant, and salvage therapy. It will be critical to continue to gather long-term safety data on the use of these agents, particularly in children.
Collapse
Affiliation(s)
- Adeline T. Yang
- Division of Oncology, Children’s Hospital of Philadelphia, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore Willis Laetsch
- Division of Oncology, Children’s Hospital of Philadelphia, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Zhou K, Gong D, He C, Xiao M, Zhang M, Huang W. Targeted therapy using larotrectinib and venetoclax for the relapsed/refractory T-cell acute lymphoblastic leukemia harboring a cryptic ETV6-NTRK3 fusion. Mol Carcinog 2023. [PMID: 37036164 DOI: 10.1002/mc.23534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023]
Abstract
Outcomes for patients with relapsed and refractory (R/R) T-cell acute lymphoblastic leukemia (T-ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are dismal, with few available treatments. Recently, identification of cancer patients harboring neurotrophic tropomyosin receptor kinase (NTRK) gene fusions is constantly increasing, especially with the advent of NTRK inhibitors. However, the role of ETV6-NTRK3 in T-ALL has not been investigated. This case represented the first detailed report of T-ALL patient harboring a cryptic ETV6-NTRK3 fusion with an unfavorable prognosis, not only because of leukemia resistant to the standard multiagent chemotherapy but also early relapse after allo-HSCT. Acquired EP300 mutation was found at relapse, which could explain the cause of recurrence and affect the follow-up treatment. Combined targeted therapy like larotrectinib allied with pan-targeted BCL-2 inhibitor venetoclax, may be a potential maintenance treatment in R/R ETV6-NTRK3 positive leukemia after allo-HSCT. The leukemic clonal evolution might be revealed through transcriptome sequencing and overcome by drugs with universal targets. Our case demonstrated that both comprehensive profiling techniques (such as transcriptome sequencing, multiparameter flow cytometry, and digital droplet polymerase chain reaction) and a multimodality treatment strategy were critical for anticipating an early relapse and personalized therapy of R/R T-cell leukemia.
Collapse
Affiliation(s)
- Kuangguo Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duanhao Gong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng He
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Sukrithan V, Jain P, Shah MH, Konda B. Kinase inhibitors in thyroid cancers. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2023; 3:e220062. [PMID: 37434642 PMCID: PMC10305552 DOI: 10.1530/eo-22-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 07/13/2023]
Abstract
Objective The treatment landscape for thyroid cancers has changed rapidly with the availability of kinase inhibitors against VEGFR, BRAF, MEK, NTRK, and RET. We provide an up-to-date review of the role of kinase inhibitors in thyroid cancer and discuss upcoming trials. Design & Methods A comprehensive review of the available literature describing kinase inhibitors in thyroid cancer was performed. Results and Conclusions Kinase inhibitors have become the standard of care for patients with metastatic radioactive iodine-refractory thyroid cancer. Short-term treatment can re-sensitize differentiated thyroid cancer to radioactive iodine, thereby potentially improving outcomes and sparing toxicities associated with the long-term use of kinase inhibitors. The approval of cabozantinib as salvage therapy for progressive radioactive iodine-refractory differentiated thyroid cancer following failure with sorafenib or lenvatinib adds to the available armamentarium of active agents. Vandetanib and cabozantinib have become mainstay treatments for metastatic medullary thyroid cancer regardless of RET mutation status. Selpercatinib and pralsetinib, potent and selective receptor kinase inhibitors with activity against RET, have revolutionized the treatment paradigm for medullary thyroid cancers and other cancers with driver mutations in RET. Dabrafenib plus trametinib for BRAF mutated anaplastic thyroid cancer provides an effective treatment option for this aggressive cancer with a dismal prognosis. In order to design the next generation of agents for thyroid cancer, future efforts will need to focus on developing a better understanding of the mechanisms of resistance to kinase inhibition including bypass signaling and escape mutations.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| | - Prachi Jain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| | - Manisha H Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| | - Bhavana Konda
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G James Cancer Center, Columbus, Ohio, USA
| |
Collapse
|