1
|
Fujii E, Kato A, Suzuki M. Patient-derived xenograft (PDX) models: characteristics and points to consider for the process of establishment. J Toxicol Pathol 2020; 33:153-160. [PMID: 32764840 PMCID: PMC7396735 DOI: 10.1293/tox.2020-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor research has largely relied on xenograft models created by the engraftment of cultured cell lines derived from tumor tissues into immunodeficient mice for in vivo studies. Like in vitro models, such models retain the ability of tumor cells to continuously proliferate, so they have been used to predict the clinical relevance of studies on proliferating cells. However, these models are composed of a limited population of tumor cells, which include only those tumor cells that are able to adapt to culture conditions, and thus they do not reflect the diversity and heterogeneity of tumors. This, at least in part, explains the poor predictivity of non-clinical data in the research and development of molecularly targeted drugs. Recently, research focus has been directed towards patient-derived xenograft (PDX) models created by directly engrafting tumor tissues, which have not been cultured in vitro, into immunodeficient mice. PDX models reflect the diversity and heterogeneity of tumors, and the evidence they provide can be verified in the patient tissues from which they were derived originally. PDX models are anticipated to efficiently bridge non-clinical and clinical data in translational research. Based on the evidence obtained from our research experience, this review describes the characteristics of PDX models for acting as tumor models, and elucidates the points to consider when attempting to establish these models.
Collapse
Affiliation(s)
- Etsuko Fujii
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Atsuhiko Kato
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Masami Suzuki
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| |
Collapse
|
2
|
Wang Z, Shi Y, Liu H, Liang Z, Zhu Q, Wang L, Tang B, Miao S, Ma N, Cen X, Ren H, Dong Y. Establishment and characterization of a DOT1L inhibitor-sensitive human acute monocytic leukemia cell line YBT-5 with a novel KMT2A-MLLT3 fusion. Hematol Oncol 2019; 37:617-625. [PMID: 31701557 DOI: 10.1002/hon.2686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 11/07/2022]
Abstract
Immortalized cell lines are useful for deciphering the pathogenesis of acute leukemia and developing novel therapeutic agents against this malignancy. In this study, a new human myeloid leukemia cell line YBT-5 was established. After more than 1-year cultivation from the bone marrow of a patient with acute monocytic leukemia, YBT cell line was established. Then a subclone, YBT-5, was isolated from YBT using single cell sorting. Morphological and cytogenetical characterizations of the YBT-5 cell line were determined by cytochemical staining, flow cytometry analysis, and karyotype analysis. Molecular features were identified by transcriptomic analysis and reverse transcription-polymerase chain reaction. To establish a tumor model, 5 × 106 YBT-5 cells were injected subcutaneously in nonobese diabetic/severe combined immune-deficiency (NOD/SCID) mice. DOT1L has been proposed as a potential therapeutic target for KMT2A-related leukemia; therefore, to explore the potential application of this new cell line, its sensitivity to a specific DOT1L inhibitor, EPZ004777 was measured ex vivo. The growth of YBT-5 does not depend on granulocyte-macrophage colony-stimulating factor. Cytochemical staining showed that α-naphthyl acetate esterase staining was positive and partially inhibited by sodium fluoride, while peroxidase staining was negative. Flow cytometry analysis of YBT-5 cells showed positive myeloid and monocytic markers. Karyotype analysis of YBT-5 showed 48,XY,+8,+8. The breakpoints between KMT2A exon 10 and exon 11 (KMT2A exon 10/11) and MLLT3 exon 5 and exon 6 (MLLT3 exon 5/6) were identified, which was different from all known breakpoint locations, and a novel fusion transcript KMT2A exon 10/MLLT3 exon 6 was formed. A tumor model was established successfully in NOD/SCID mice. EPZ004777 could inhibit the proliferation and induce the differentiation of YBT-5 cells. Therefore, a new acute monocytic leukemia cell line with clear biological and molecular features was established and may be used in the research and development of new agents targeting KMT2A-associated leukemia.
Collapse
Affiliation(s)
- Zhenhua Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yongjin Shi
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Qiang Zhu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Lihong Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Shengchao Miao
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ning Ma
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Sugimoto K, Miyata Y, Nakayama T, Saito S, Suzuki R, Hayakawa F, Nishiwaki S, Mizuno H, Takeshita K, Kato H, Ueda R, Takami A, Naoe T. Fibroblast Growth Factor-2 facilitates the growth and chemo-resistance of leukemia cells in the bone marrow by modulating osteoblast functions. Sci Rep 2016; 6:30779. [PMID: 27481339 PMCID: PMC4969776 DOI: 10.1038/srep30779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/07/2016] [Indexed: 11/08/2022] Open
Abstract
Stromal cells and osteoblasts play major roles in forming and modulating the bone marrow (BM) hematopoietic microenvironment. We have reported that FGF2 compromises stromal cell support of normal hematopoiesis. Here, we examined the effects of FGF2 on the leukemia microenvironment. In vitro, FGF2 significantly decreased the number of stromal-dependent and stromal-independent G0-leukemia cells in the stromal layers. Accordingly, CML cells placed on FGF2-treated stromal layers were more sensitive to imatinib. Conversely, FGF2 increased the proliferation of osteoblasts via FGFR1 IIIc, but its effects on osteoblast support of leukemia cell growth were limited. We next treated a human leukemia mouse model with Ara-C with/without systemic FGF2 administration. BM sections from FGF2-treated mice had thickened bone trabeculae and increased numbers of leukemia cells compared to controls. Leukemia cell density was increased, especially in the endosteal region in FGF2/Ara-C -treated mice compared to mice treated with Ara-C only. Interestingly, FGF2 did not promote leukemia cell survival in Ara-C treated spleen. Microarray analysis showed that FGF2 did not alter expression of many genes linked to hematopoiesis in osteoblasts, but modulated regulatory networks involved in angiogenesis and osteoblastic differentiation. These observations suggest that FGF2 promotes leukemia cell growth in the BM by modulating osteoblast functions.
Collapse
Affiliation(s)
- Keiki Sugimoto
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co. Ltd., Otsu, Shiga, Japan
| | - Yasuhiko Miyata
- Departments of Hematology, Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Takayuki Nakayama
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shigeki Saito
- Departments of Hematology, Japanese Red Cross Nagoya Daiini Hospital, Nagoya, Aichi, Japan
| | - Ritsuro Suzuki
- Departments of Hematology, Shimane University, Izumo, Shimane, Japan
| | - Fumihiko Hayakawa
- Departments of Hematology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Nishiwaki
- Depertment of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Hiroki Mizuno
- Laboratory of Cellular Dynamics, World Premier International Research Center Initiative-Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kyosuke Takeshita
- Departments of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hidefumi Kato
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akiyoshi Takami
- Department of Hematology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomoki Naoe
- Departments of Hematology, Nagoya Medical Center, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Niwa Y, Minami Y, Abe A, Hayakawa F, Yamada K, Naoe T. Wnt signaling is associated with cell survival in the interaction between acute myeloid leukemia cells and stromal cells. Leuk Lymphoma 2016; 57:2192-4. [PMID: 26727242 DOI: 10.3109/10428194.2015.1124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yosuke Niwa
- a Department of Hematology and Oncology , Nagoya University Graduate School of Medicine , Nagoya , Japan ;,b Department of Pharmacy , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yosuke Minami
- c Department of Transfusion Medicine and Cell Therapy , Kobe University Hospital , Kobe , Japan
| | - Akihiro Abe
- d Department of Hematology , Fujita Health University , Toyoake , Japan
| | - Fumihiko Hayakawa
- a Department of Hematology and Oncology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kiyofumi Yamada
- b Department of Pharmacy , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Tomoki Naoe
- a Department of Hematology and Oncology , Nagoya University Graduate School of Medicine , Nagoya , Japan ;,e National Hospital Organization Nagoya Medical Center , Nagoya , Japan
| |
Collapse
|
5
|
Clinical features and gene- and microRNA-expression patterns in adult acute leukemia patients with t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3). Leukemia 2015; 30:1586-9. [PMID: 26669971 DOI: 10.1038/leu.2015.345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood 2009; 113:4885-93. [PMID: 19246561 DOI: 10.1182/blood-2008-08-175208] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although rituximab is a key molecular targeting drug for CD20-positive B-cell lymphomas, resistance to rituximab has recently been recognized as a considerable problem. Here, we report that a CD20-negative phenotypic change after chemotherapies with rituximab occurs in a certain number of CD20-positive B-cell lymphoma patients. For 5 years, 124 patients with B-cell malignancies were treated with rituximab-containing chemotherapies in Nagoya University Hospital. Relapse or progression was confirmed in 36 patients (29.0%), and a rebiopsy was performed in 19 patients. Of those 19, 5 (26.3%; diffuse large B-cell lymphoma [DLBCL], 3 cases; DLBCL transformed from follicular lymphoma, 2 cases) indicated CD20 protein-negative transformation. Despite salvage chemotherapies without rituximab, all 5 patients died within 1 year of the CD20-negative transformation. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) showed that CD20 mRNA expression was significantly lower in CD20-negative cells than in CD20-positive cells obtained from the same patient. Interestingly, when CD20-negative cells were treated with 5-aza-2'-deoxycytidine in vitro, the expression of CD20 mRNA was stimulated within 3 days, resulting in the restoration of both cell surface expression of the CD20 protein and rituximab sensitivity. These findings suggest that some epigenetic mechanisms may be partly related to the down-regulation of CD20 expression after rituximab treatment.
Collapse
|
7
|
Fujii E, Suzuki M, Matsubara K, Watanabe M, Chen YJ, Adachi K, Ohnishi Y, Tanigawa M, Tsuchiya M, Tamaoki N. Establishment and characterization of in vivo human tumor models in the NOD/SCID/gamma(c)(null) mouse. Pathol Int 2008; 58:559-67. [PMID: 18801070 DOI: 10.1111/j.1440-1827.2008.02271.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunodeficient mice are widely used for xenografts of human cells and tissue. The purpose of the present study was to investigate the characteristics of xenograft human tumor models using engraftment of various non-hematopoietic tumors in the NOD/SCID/gamma(c) (null) mouse. For tumor models, human solid tumor tissues were serially passaged three or more times to establish tissue lines. A total of 326 fresh tumor specimens, mainly gastrointestinal and female genital tissue, were engrafted with 54 established tissue lines. The types of tissue lines varied and included tumor tissue of both epithelial and mesenchymal origin. In some cases the original surgical specimen was replaced with large mononuclear cells. In the established tumor tissue lines, differentiation and tumor structure were similar to that of the original surgical specimen. The interstitium of the xenograft tissue in the tissue lines was relatively well preserved although slightly decreased and replaced by host tissue. These results indicate that human solid tumors can be successfully engrafted into the NOD/SCID/gamma(c) (null) mouse and that tissue lines with the characteristics of the original tumors can be established. Investigators in the field of tumor research will benefit from the availability of tissue lines that allow the establishment of more relevant in vivo human tissue models.
Collapse
|
8
|
Ito M, Kobayashi K, Nakahata T. NOD/Shi-scid IL2rgamma(null) (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 2008; 324:53-76. [PMID: 18481452 DOI: 10.1007/978-3-540-75647-7_3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Humanized mice," in which various kinds of human cells and tissues can be engrafted and retain the same functions as in humans, are extremely useful because human diseases can be studied directly. Using the newly combined immunodeficient NOD-scid IL2rgamma(null) mice and Rag2(null) IL2rgamma(null) humanized mice, it has became possible to expand applications because various hematopoietic cells can be differentiated by human hematopoietic stem cell transplantation, and the human immune system can be reconstituted to some degree. This work has attracted attention worldwide, but the development and use of immunodeficient mice in Japan are not very well known or understood. This review describes the history and characteristics of the NOD/Shi-scid IL2rgamma(null) (NOG) and BALB/cA-Rag2(null) IL2rgamma(null) mice that were established in Japan, including our unpublished data from researchers who are currently using these mice. In addition, we also describe the potential development of new immunodeficient mice that can be used as humanized mice in the future.
Collapse
Affiliation(s)
- M Ito
- Laboratory of Immunology, Central Institute for Experimental Animals, 1430 Nogawa, Miyamae, Kawasaki 216-0001, Japan.
| | | | | |
Collapse
|
9
|
Imagama S, Abe A, Suzuki M, Hayakawa F, Katsumi A, Emi N, Kiyoi H, Naoe T. LRP16 is fused to RUNX1 in monocytic leukemia cell line with t(11;21)(q13;q22). Eur J Haematol 2007; 79:25-31. [PMID: 17532767 DOI: 10.1111/j.1600-0609.2007.00858.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The RUNX1 (also known as AML1) gene is observed frequently as the target of chromosomal rearrangements in human acute leukemia. We describe here a previously unreported rearrangement, t(11;21)(q13;q22), that disrupts the RUNX1 gene in a patient with acute leukemia and the molecular analysis of the fusion gene. METHODS We have established a monocytic leukemia cell line, ELAM-1, from a patient with acute leukemia evolving from myelodysplastic syndrome (MDS). Translocation (11;21) (q13;q22) was observed in both patient leukemia cells and ELAM-1. RESULTS The split signal of RUNX1 was detected by fluorescence in situ hybridization and indicated the involvement of RUNX1 in ELAM-1. Using 3'- Rapid amplification of cDNA ends and reverse transcription-Polymerase chain reaction analysis, we detected both RUNX1 (exon 5)-LRP16 and RUNX1 (exon 6)-LRP16 transcripts, suggesting that the RUNX1 breakpoint lies in intron 6 and that alternative fusion splice variants are generated. Reciprocal LRP16-RUNX1 fusion was also detected. CONCLUSIONS We identified a novel RUNX1 fusion partner, LRP16 on 11q13 involving t(11;21)(q13;q22). Although it was reported that overexpression of LRP16 promotes human breast cancer cell proliferation, the function of LRP16 in leukemia remains to be studied. This fusion gene and cell line may provide a new research tool to investigate the mechanism of leukemogenesis generated by the RUNX1 fusion gene.
Collapse
MESH Headings
- Base Sequence
- Carboxylic Ester Hydrolases
- Cell Line, Tumor
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 21
- Core Binding Factor Alpha 2 Subunit/genetics
- DNA Primers
- Female
- Humans
- Karyotyping
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/pathology
- Middle Aged
- Neoplasm Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
Collapse
Affiliation(s)
- Shizuka Imagama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abe A, Kiyoi H, Ninomiya M, Yamazaki T, Murase T, Ozeki K, Suzuki M, Hayakawa F, Katsumi A, Emi N, Naoe T. Establishment of a Stroma-Dependent Human Acute Myelomonocytic Leukemia Cell Line, NAMO-2, with FLT3 Tandem Duplication. Int J Hematol 2006; 84:328-36. [PMID: 17118759 DOI: 10.1532/ijh97.06056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have established a stroma-dependent myelomonocytic cell line, NAMO-2, with FLT3 internal tandem duplication (FLT3/ITD). Leukemia cells from a patient with acute myelomonocytic leukemia were administered to form subcutaneous tumors in nude mice, which were maintained successively, although we failed to establish continuously growing cells from the original leukemia cell culture. In the cultures of cells from subcutaneous tumors, there were stroma cells that had originated from the nude mice and showed continuous growth. The leukemia cells showed continuous growth dependent on this stroma, and this cell line was named NAMO-2. Detection of FLT3/ITD by the reverse transcriptase polymerase chain reaction (PCR) and genomic PCR showed that NAMO-2 was homozygous for FLT3/ITD. Constitutive activation of FLT3 was detected by Western blotting, and the phosphorylation of Akt, MEK, and STAT5 was also observed. FLT3 kinase inhibitor AG1296 specifically inhibited cell growth. NAMO-2 provides a useful tool to analyze adherence-dependent survival signaling of leukemia with FLT3/ITD and a model for the screening of FLT3 kinase inhibitors.
Collapse
Affiliation(s)
- Akihiro Abe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|