1
|
Tan MS, Chang SW, Cheah PL, Yap HJ. Integrative machine learning analysis of multiple gene expression profiles in cervical cancer. PeerJ 2018; 6:e5285. [PMID: 30065881 PMCID: PMC6064203 DOI: 10.7717/peerj.5285] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023] Open
Abstract
Although most of the cervical cancer cases are reported to be closely related to the Human Papillomavirus (HPV) infection, there is a need to study genes that stand up differentially in the final actualization of cervical cancers following HPV infection. In this study, we proposed an integrative machine learning approach to analyse multiple gene expression profiles in cervical cancer in order to identify a set of genetic markers that are associated with and may eventually aid in the diagnosis or prognosis of cervical cancers. The proposed integrative analysis is composed of three steps: namely, (i) gene expression analysis of individual dataset; (ii) meta-analysis of multiple datasets; and (iii) feature selection and machine learning analysis. As a result, 21 gene expressions were identified through the integrative machine learning analysis which including seven supervised and one unsupervised methods. A functional analysis with GSEA (Gene Set Enrichment Analysis) was performed on the selected 21-gene expression set and showed significant enrichment in a nine-potential gene expression signature, namely PEG3, SPON1, BTD and RPLP2 (upregulated genes) and PRDX3, COPB2, LSM3, SLC5A3 and AS1B (downregulated genes).
Collapse
Affiliation(s)
- Mei Sze Tan
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Phaik Leng Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hwa Jen Yap
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Zhang S, Li Z, Zhang L, Xu Z. MEF2‑activated long non‑coding RNA PCGEM1 promotes cell proliferation in hormone‑refractory prostate cancer through downregulation of miR‑148a. Mol Med Rep 2018; 18:202-208. [PMID: 29749452 PMCID: PMC6059670 DOI: 10.3892/mmr.2018.8977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
Prostate cancer gene expression marker 1 (PCGEM1) is a prostate-specific gene overexpressed in prostate cancer cells that promotes cell proliferation. To study the molecular mechanism of PCGEM1 function in hormone-refractory prostate cancer, the interaction between myocyte enhancer factor 2 (MEF2) and PCGEM1 was assessed by a luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. In addition, the underlying mechanism of PCGEM1 regulating expression of microRNA (miR)-148a in PC3 prostate cancer cells was evaluated. Relative expression levels were measured by reverse transcription-quantitative polymerase chain reaction, and early apoptosis was measured by flow cytometry. PCGEM1 was demonstrated to be overexpressed in prostate cancer tissues compared with noncancerous tissues. Expression levels of PCGEM1 in PC3 cancer cells were demonstrated to be regulated by MEF2, as PCGME1 mRNA was increased by MEF2 overexpression but decreased by MEF2 silencing. MEF2 was also demonstrated to enhance the activity of PCGEM1 promoter and thus promote PCGEM1 transcription. In addition, downregulation of PCGEM1 expression in PC3 cells increased expression of miR-148a. By contrast, overexpression of PCGEM1 decreased miR-148a expression. Finally, PCGME1 silencing by small interfering RNA significantly induced early cell apoptosis but this effect was reduced by a miR-148a inhibitor. In conclusion, the present study demonstrated a positive regulatory association between MEF2 and PCGEM1, and a reciprocal negative regulatory association between PCGEM1 and miR-148a that controls cell apoptosis. The present study, therefore, provides new insights into the mechanism of PCGEM1 function in prostate cancer development.
Collapse
Affiliation(s)
- Shibao Zhang
- Department of Urology, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong 250013, P.R. China
| | - Zongwu Li
- Department of Urology, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong 250013, P.R. China
| | - Longyang Zhang
- Department of Urology, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong 250013, P.R. China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| |
Collapse
|
3
|
Pathway-based expression profiling of benign prostatic hyperplasia and prostate cancer delineates an immunophilin molecule associated with cancer progression. Sci Rep 2017; 7:9763. [PMID: 28852180 PMCID: PMC5575002 DOI: 10.1038/s41598-017-10068-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Aberrant restoration of AR activity is linked with prostate tumor growth, therapeutic failures and development of castrate-resistant prostate cancer. Understanding the processes leading to AR-reactivation should provide the foundation for novel avenues of drug discovery. A differential gene expression study was conducted using biopsies from CaP and BPH patients to identify the components putatively responsible for reinstating AR activity in CaP. From the set of genes upregulated in CaP, FKBP52, an AR co-chaperone, was selected for further analysis. Expression of FKBP52 was positively correlated with that of c-Myc. The functional cross-talk between c-Myc and FKBP52 was established using c-Myc specific-siRNA to LNCaP cells that resulted in reduction of FKBP52. A non-canonical E-box sequence housing a putative c-Myc binding site was detected on the FKBP4 promoter using in silico search. LNCaP cells transfected with the FKBP52 promoter cloned in pGL3 basic showed increased luciferase activity which declined considerably when the promoter-construct was co-transfected with c-Myc specific-siRNA. ChIP-PCR confirmed the binding of c-Myc with the conserved E-box located in the FKBP52 promoter. c-Myc downregulation concomitantly affected expression of FGF8. Since expression of FGF8 is controlled by AR, our study unveiled a novel functional axis between c-Myc, AR and FGF8 operating through FKBP52.
Collapse
|
4
|
Sand M, Bechara FG, Gambichler T, Sand D, Bromba M, Hahn SA, Stockfleth E, Hessam S. Circular RNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci 2016; 83:210-8. [PMID: 27298156 DOI: 10.1016/j.jdermsci.2016.05.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/12/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND CircularRNAs (circRNAs) are a reinvented class of abundant, stable, and evolutionary conserved non-coding RNAs with pivotal impacts on the cellular regulatory network and epigenetics by sequestering microRNAs (miRNAs) like a sponge. OBJECTIVE Purpose of the present study was to investigate circRNA expression in cutaneous squamous cell carcinoma (cSCC). METHODS A total of six cSCC and six non-lesional skin (control) biopsies were harvested. Microarray based circRNA expression was determined in the cSCC (n=3) and compared with the non-lesional skin (n=3) from a group of 13,617 distinct human circRNAs found in the Arraystar circRNA Array V2.0 (Arraystar, Rockville, USA). Microarray data were validated by quantitative real-time reverse transcription polymerase chain reaction in a separate group (cSCC, n=3 and non-lesional skin, n=3). miRNA binding to miRNA response elements (MREs) sequence data were acquired bioinformatically. Further data mining was performed to identify circRNAs containing MRE sequences that interacted with previously described miRNAs playing a role in cSCC formation. RESULTS A total of 322 circRNAs (143 up- and 179 down-regulated; fold change ≥2 and p<0.05) were identified as differentially expressed in cSCC. Furthermore, we identified a total of 1603 MREs that were part of the differentially expressed circRNAs. Among those circRNAs, a complementary MRE sequence was identified in 23 miRNAs previously known to be cSCC relevant. CONCLUSION This study showed that circRNAs are differentially expressed in cSCC and play an important role in tumor formation by interfering with cSCC relevant miRNAs through miRNA sequence complementary MREs participating in epigenetic control.
Collapse
Affiliation(s)
- Michael Sand
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum 44791 Bochum, Germany; Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany.
| | - Falk G Bechara
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum 44791 Bochum, Germany
| | - Thilo Gambichler
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum 44791 Bochum, Germany
| | - Daniel Sand
- University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Michael Bromba
- Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Stephan A Hahn
- Department of Internal Medicine, Knappschaftskrankenhaus University of Bochum, Zentrum für Klinische Forschung, Labor für Molekulare Gastroenterologische Onkologie, 44780 Bochum, Germany, Germany
| | - Eggert Stockfleth
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum 44791 Bochum, Germany
| | - Schapoor Hessam
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum 44791 Bochum, Germany
| |
Collapse
|
5
|
Brooke GN, Gamble SC, Hough MA, Begum S, Dart DA, Odontiadis M, Powell SM, Fioretti FM, Bryan RA, Waxman J, Wait R, Bevan CL. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells. Mol Cell Proteomics 2015; 14:1201-16. [PMID: 25693800 PMCID: PMC4424393 DOI: 10.1074/mcp.m113.036764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Indexed: 11/06/2022] Open
Abstract
Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic responses dependent upon cellular context.
Collapse
Affiliation(s)
- Greg N Brooke
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK; §Molecular Oncology, School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Simon C Gamble
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Michael A Hough
- §Molecular Oncology, School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Shajna Begum
- ¶Kennedy Institute of Rheumatology, Imperial College London, London W6 8LH, UK
| | - D Alwyn Dart
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK; ‖Cardiff University Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Michael Odontiadis
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Sue M Powell
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Flavia M Fioretti
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Rosie A Bryan
- §Molecular Oncology, School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Jonathan Waxman
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK
| | - Robin Wait
- ¶Kennedy Institute of Rheumatology, Imperial College London, London W6 8LH, UK
| | - Charlotte L Bevan
- From the ‡Androgen Signalling Laboratory, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
6
|
Gotoh M, Ichikawa H, Arai E, Chiku S, Sakamoto H, Fujimoto H, Hiramoto M, Nammo T, Yasuda K, Yoshida T, Kanai Y. Comprehensive exploration of novel chimeric transcripts in clear cell renal cell carcinomas using whole transcriptome analysis. Genes Chromosomes Cancer 2014; 53:1018-32. [PMID: 25230976 PMCID: PMC4304365 DOI: 10.1002/gcc.22211] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/07/2014] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to clarify the participation of expression of chimeric transcripts in renal carcinogenesis. Whole transcriptome analysis (RNA sequencing) and exploration of candidate chimeric transcripts using the deFuse program were performed on 68 specimens of cancerous tissue (T) and 11 specimens of non-cancerous renal cortex tissue (N) obtained from 68 patients with clear cell renal cell carcinomas (RCCs) in an initial cohort. As positive controls, two RCCs associated with Xp11.2 translocation were analyzed. After verification by reverse transcription (RT)-PCR and Sanger sequencing, 26 novel chimeric transcripts were identified in 17 (25%) of the 68 clear cell RCCs. Genomic breakpoints were determined in five of the chimeric transcripts. Quantitative RT-PCR analysis revealed that the mRNA expression levels for the MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes, being partner genes involved in the chimeric transcripts in the initial cohort, were significantly reduced in 26 T samples relative to the corresponding 26 N samples in the second cohort. Moreover, the mRNA expression levels for the above partner genes in T samples were significantly correlated with tumor aggressiveness and poorer patient outcome, indicating that reduced expression of these genes may participate in malignant progression of RCCs. As is the case when their levels of expression are reduced, these partner genes also may not fully function when involved in chimeric transcripts. These data suggest that generation of chimeric transcripts may participate in renal carcinogenesis by inducing dysfunction of tumor-related genes.
Collapse
Affiliation(s)
- Masahiro Gotoh
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Romanuik TL, Wang G, Morozova O, Delaney A, Marra MA, Sadar MD. LNCaP Atlas: gene expression associated with in vivo progression to castration-recurrent prostate cancer. BMC Med Genomics 2010; 3:43. [PMID: 20868494 PMCID: PMC2956710 DOI: 10.1186/1755-8794-3-43] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/24/2010] [Indexed: 01/02/2023] Open
Abstract
Background There is no cure for castration-recurrent prostate cancer (CRPC) and the mechanisms underlying this stage of the disease are unknown. Methods We analyzed the transcriptome of human LNCaP prostate cancer cells as they progress to CRPC in vivo using replicate LongSAGE libraries. We refer to these libraries as the LNCaP atlas and compared these gene expression profiles with current suggested models of CRPC. Results Three million tags were sequenced using in vivo samples at various stages of hormonal progression to reveal 96 novel genes differentially expressed in CRPC. Thirty-one genes encode proteins that are either secreted or are located at the plasma membrane, 21 genes changed levels of expression in response to androgen, and 8 genes have enriched expression in the prostate. Expression of 26, 6, 12, and 15 genes have previously been linked to prostate cancer, Gleason grade, progression, and metastasis, respectively. Expression profiles of genes in CRPC support a role for the transcriptional activity of the androgen receptor (CCNH, CUEDC2, FLNA, PSMA7), steroid synthesis and metabolism (DHCR24, DHRS7, ELOVL5, HSD17B4, OPRK1), neuroendocrine (ENO2, MAOA, OPRK1, S100A10, TRPM8), and proliferation (GAS5, GNB2L1, MT-ND3, NKX3-1, PCGEM1, PTGFR, STEAP1, TMEM30A), but neither supported nor discounted a role for cell survival genes. Conclusions The in vivo gene expression atlas for LNCaP was sequenced and support a role for the androgen receptor in CRPC.
Collapse
Affiliation(s)
- Tammy L Romanuik
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Chen W, Wu W, Zhao J, Yu C, Liu W, Jiang A, Zhang J. Molecular cloning and preliminary analysis of the human alpha-methylacyl-CoA racemase promoter. Mol Biol Rep 2007; 36:423-30. [PMID: 18080842 DOI: 10.1007/s11033-007-9196-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 12/03/2007] [Indexed: 11/28/2022]
Abstract
Alpha-methylacyl-CoA racemase (AMACR) is an enzyme involved in beta-oxidation of branched-chain fatty acids and bile acid intermediates. Recent works have revealed that AMACR is overexpressed in prostate cancer and functionally important for the growth of prostate cancer cells. Despite the recent interest in AMACR as a diagnostic marker for prostate cancer, little is known about the transcriptional regulation of AMACR in prostate cancer. To elucidate the regulation of the AMACR gene, a 2.3-kb fragment of its 5' flanking region was cloned into pGL3-Basic, then using tansfection and Dual-luciferase reporter assay, a preliminary analysis on promoter activity and function of this 2.3-kb sequence was carried out. This 2.3-kb fragment represented promoter activity that consistent with the expression level in LNCaP and PC-3 cells respectively. Transfection experiments of 5'-deletion mutants into LNCaP cells revealed a positive-regulatory region located between nucleotides -423 and -93 that may be responsible for AMACR transactivation in LNCaP cells. Cotransfection experiments revealed that promoter activity of this 2.3-kb sequence was down-regulated by C/EBPalpha, p53, NF-kappaB p50. And data from luciferase-based reporter assays suggest that the promoter function of AMACR is independent of androgen receptor-mediated signaling.
Collapse
Affiliation(s)
- Weiwen Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu W, Chen W, Zhang P, Yu C, Kong F, Deng J, Zhang J, Jiang A. Molecular cloning and analysis of the human PCAN1 (GDEP) promoter. Cell Mol Biol Lett 2007; 12:482-92. [PMID: 17468839 PMCID: PMC6275906 DOI: 10.2478/s11658-007-0016-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 02/08/2007] [Indexed: 11/24/2022] Open
Abstract
Human PCAN1 (prostate cancer gene 1) is a prostate-specific gene that is highly expressed in prostate epithelial tissue, and frequently mutated in prostate tumors. To better understand the regulation of the PCAN1 gene, a 2.6-kb fragment of its 5′ flanking region was obtained by PCR. Its promoter activity was examined via the dual-luciferase reporter assay after it had been cloned into a pGL3-basic vector generating pGL3-p2.6kb and transfected into LNCaP cells. pGL3-basic and pGL3-control were respectively used as the negative and positive controls. Sequence analysis with the MatInspector database showed that some possible binding sites for the transcriptional factors, NKX3.1, P53, SP1, cEBP and the PPAR/RXR heterodimers may locate on a 2.6-kb region upstream of the PCAN1 gene. To examine the relevant regulation of PCAN1, pGL3-p2.6kb was transfected into the prostate cancer cell line LNCaP, which was treated with R1881 (10−7∼10−9 mol/l), 17β-estradiol (17β-E2, 10−7∼10−9 mol/l), all-trans-retinoic acid (all-trans-RA, 10−5∼10−7 mol/l) or 9-cis-retinoic acid (9-cis-RA, 10−5∼10−7 mol/l), and eukaryotic expression plasmids of NKX3.1, p53, Sp1, Pten, PPARγ or cEBPα were cotransfected with pGL3-p2.6kb into LNCaP cells. pRL-TK, a Renilla luciferase reporter vector, was cotransfected into all the transfection lines as an internal control. The activities of pGL3-p2.6kb (PCAN1 promoter) were analyzed via the dual-luciferase reporter assay 48 h after transfection. The results showed that 9-cis-RA enhanced the PCAN1 promoter activity in a dose-dependent manner, while R1881, 17β-E2 and all-trans-RA had no significant effect on PCAN1 promoter activities. Cotransfection with pGL3-p2.6kb and the expression plasmids of NKX3.1, p53, Sp1 or Pten respectively resulted in 1.66-, 2.48-, 2.00-and 1.72-fold 2.6 kb PCAN1 promoter activity increases relative to the controls, which were cotransfected with pcDNA3.1(+), while cotransfection of PPARγ and cEBPα yielded no significant effect on PCAN1 promoter activities. These results could be applied for further study of the function and transcription regulation of the PCAN1 gene in prostate development and carcinogenesis.
Collapse
Affiliation(s)
- Wenwen Liu
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, 250012 China
| | - Weiwen Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, 250012 China
| | - Pengju Zhang
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, 250012 China
| | - Chunxiao Yu
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, 250012 China
| | - Feng Kong
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, 250012 China
| | - Jingti Deng
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, 250012 China
| | - Jianye Zhang
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, 250012 China
| | - Anli Jiang
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, 250012 China
| |
Collapse
|
10
|
Vias M, Burtt G, Culig Z, Veerakumarasivam A, Neal DE, Mills IG. A role for neurotensin in bicalutamide resistant prostate cancer cells. Prostate 2007; 67:190-202. [PMID: 17044078 DOI: 10.1002/pros.20518] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Anti-androgens are administered as a principal treatment for prostate cancer. Aggressive hormone refractory disease is characterized in some cases by the development of a neuroendocrine phenotype. However little attention has been paid to resistance pathways selected for by long-term treatment with non-steroidal anti-androgens. METHODS Using a resistant sub-line, LNCaP-Bic, we performed a comparative gene expression profiling using cDNA microarrays and target validation by qRT-PCR. Targets were then explored using cell proliferation, cell cycle analysis and in vitro invasion assays using siRNA technology. RESULTS Neurotensin/Neuromedin N (NTS) was upregulated in the LNCaP-Bic line at both the transcript and protein level. The resistant line was found to have an increased proliferation rate, more rapid cell cycle progression and increased invasiveness through Matrigel. Each phenotypic difference could be reduced using siRNA knockdown of NT. CONCLUSION Increased expression of NT in bicalutamide resistant prostate cancer cells induces cell proliferation and invasion suggesting that this peptide may contribute to the development of bicalutamide resistant prostate cancer.
Collapse
Affiliation(s)
- Maria Vias
- Department of Oncology, Hutchison/MRC Research Centre, CRUK Uro-Oncology Group, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|