1
|
Wang L, Qiu F, Shen Y, Chen S, Si P. Co-existence of KMT2A:: SEPTIN6 fusion and DIS3 variant in a pediatric case with acute myeloid leukemia: a case report and literature review. Front Oncol 2023; 13:1308786. [PMID: 38152368 PMCID: PMC10751303 DOI: 10.3389/fonc.2023.1308786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The lysine(K)-specific methyltransferase 2A gene (KMT2A), previously known as mixed lineage leukemia (MLL), frequently rearranged in acute leukemia, belongs to one of the most promiscuous genes and has been found fused to more than 80 different partners. KMT2A::SEPTIN6 fusion is a relatively uncommon rearrangement observed in pediatric acute myeloid leukemia (AML) patients, some of which may harbor other mutations. We herein report a case of AML-M4-infant with KMT2A::SEPTIN6 fusion and DIS3 variant. The 8-month-old girl presented with leukocytosis, anemia and thrombocytopenia. A bone marrow smear disclosed that 64% of the total nucleated cells were blasts. Karyotype analysis showed 46,X,t(X;11)(q24;q23)[10]/46,XX[10]. Fluorescence in situ hybridization analysis suggested a possible break in the KMT2A gene. After whole transcriptome sequencing, Exon 9 of KMT2A was fused in-frame with Exon 2 of SEPTIN6. This is a typical type of chromosomal rearrangement leading to the KMT2A::SEPTIN6 fusion. Meanwhile, DIS3 variant [c.2065C>T, p.R689X, variant allele frequency (VAF): 39.8%] was identified. KMT2A::SEPTIN6 fusion has been associated with the pathogenesis of AML, whereas DIS3 variants are relatively rare genetic events in pediatric AML. Regrettably, the relatives disagreed with the combination chemotherapy, and the patient eventually died of progressive disease. In conclusion, our findings provide a foundation for a better understanding of the genotypic profile of KMT2A::SEPTIN6 associated AML, and the co-existence of KMT2A::SEPTIN6 and DIS3 variant might contribute to the disease progression and transformation of AML.
Collapse
Affiliation(s)
- Liang Wang
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Fangzhou Qiu
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Yongming Shen
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Sen Chen
- Department of Hematology, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| | - Ping Si
- Department of Clinical Laboratory, Tianjin Children’s Hospital/Children’s Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Chen F, Yang Y, Fu S. Clinical profile in KMT2A-SEPT6-positive acute myeloid leukemia: Does it often co-occur with NRAS mutations? Front Med (Lausanne) 2022; 9:890959. [PMID: 36213638 PMCID: PMC9532577 DOI: 10.3389/fmed.2022.890959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background The KMT2A-SEPT6 fusion gene is a relatively rare genetic event in leukemia. Its clinical characteristics and prognosis, especially the profile of co-occurring gene mutations remain unclear. Methods We retrospectively analyzed the characteristics of four cases carrying KMT2A-SEPT6 in our hospital, and provided a literature review. Results All the four patients were diagnosed with acute myeloid leukemia (AML) and harbored X chromosome and 11 chromosome rearrangements, they all manifested high levels of D-dimer. Three of four patients had NRAS mutations while one patient with congenital AML did not. Of the four cases, one developed drug resistance, one suffered relapse after bone marrow transplantation (BMT) and two died. Combined with other cases reported in the literature, we found that of all patients diagnosed with AML, 90.9% were children (≤9 years old). Patients with white blood cells ≥20.0 × 109/L or diagnosed with M4 had a shorter overall survival (P < 0.05). Age, whether to receive BMT, and the chromosome rearrangement patterns had no significant effect on overall survival (P > 0.05). Conclusions KMT2A-SEPT6 was more commonly observed in pediatric AML patients, some of which may co-occur with NRAS mutations. The prognosis was related to the white blood cell levels and the leukemia subtype, but was not related to age or BMT. More cases need to be accumulated to better understand the profile in KMT2A-SEPT6-positive AML.
Collapse
Affiliation(s)
- Fang Chen
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Yang
- Division of Hematology, Department of Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Fu
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Shuang Fu
| |
Collapse
|
3
|
Renella R, Gagne K, Beauchamp E, Fogel J, Perlov A, Sola M, Schlaeger T, Hofmann I, Shimamura A, Ebert BL, Schmitz-Abe K, Markianos K, Murphy K, Sun L, Rockowitz S, Sliz P, Campagna DR, Springer TA, Bahl C, Agarwal S, Fleming MD, Williams DA. Congenital X-linked neutropenia with myelodysplasia and somatic tetraploidy due to a germline mutation in SEPT6. Am J Hematol 2022; 97:18-29. [PMID: 34677878 PMCID: PMC8671325 DOI: 10.1002/ajh.26382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
Septins play key roles in mammalian cell division and cytokinesis but have not previously been implicated in a germline human disorder. A male infant with severe neutropenia and progressive dysmyelopoiesis with tetraploid myeloid precursors was identified. No known genetic etiologies for neutropenia or bone marrow failure were found. However, next-generation sequencing of germline samples from the patient revealed a novel, de novo germline stop-loss mutation in the X-linked gene SEPT6 that resulted in reduced SEPT6 staining in bone marrow granulocyte precursors and megakaryocytes. Patient skin fibroblast-derived induced pluripotent stem cells (iPSCs) produced reduced myeloid colonies, particularly of the granulocyte lineage. CRISPR/Cas9 knock-in of the patient's mutation or complete knock-out of SEPT6 was not tolerated in non-patient-derived iPSCs or human myeloid cell lines, but SEPT6 knock-out was successful in an erythroid cell line and resulting clones revealed a propensity to multinucleation. In silico analysis predicts that the mutated protein hinders the dimerization of SEPT6 coiled-coils in both parallel and antiparallel arrangements, which could in turn impair filament formation. These data demonstrate a critical role for SEPT6 in chromosomal segregation in myeloid progenitors that can account for the unusual predisposition to aneuploidy and dysmyelopoiesis.
Collapse
Affiliation(s)
- Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, Lausanne University Hospital, Switzerland,Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - Katelyn Gagne
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - Ellen Beauchamp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Jonathan Fogel
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - Aleksej Perlov
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - Mireia Sola
- Institute for Protein Innovation, Boston, USA
| | - Thorsten Schlaeger
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - Inga Hofmann
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA,Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, USA,Present address: Division of Pediatric Hematology-Oncology, University of Wisconsin School of Medicine, Madison, USA
| | - Akiko Shimamura
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, USA
| | - Klaus Schmitz-Abe
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, USA
| | - Kyriacos Markianos
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, USA
| | - Kristi Murphy
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, USA
| | - Liang Sun
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, USA
| | - Shira Rockowitz
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, USA
| | - Piotr Sliz
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, USA,Division of Molecular Medicine, Boston Children’s Hospital, Boston, USA
| | - Dean R Campagna
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - Timothy A Springer
- Program in Cellular & Molecular Medicine, Boston Children’s Hospital, Boston, USA,Institute for Protein Innovation, Boston, USA
| | - Christopher Bahl
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA,Institute for Protein Innovation, Boston, USA
| | - Suneet Agarwal
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - David A Williams
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, USA,Harvard Stem Cell Institute, Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Chebly A, Djambas Khayat C, Yammine T, Korban R, Semaan W, Bou Zeid J, Farra C. Pediatric M5 acute myeloid leukemia with MLL-SEPT6 fusion and a favorable outcome. Leuk Res Rep 2021; 16:100277. [PMID: 34760618 PMCID: PMC8566899 DOI: 10.1016/j.lrr.2021.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with MLL-SEPT6 fusion represent a small subset of AML. The uncommon MLL-SEPT6 rearrangement results from t(X;11) or other variants like ins(X;11), and it is usually associated with complex cytogenetic abnormalities. We herein report a case of AML-M5-infant with ins(X;11)(q24;q23q13) and MLL-SEPT6. The one-year-old boy presented with leukocytosis, anemia and thrombocytopenia. He had a favorable response to chemotherapy according to ELAM02protocol and is currently in complete remission. We here, highlight the occurrence of MLL-SEPT6 as the sole abnormality in a pediatric-AML-M5 case, discuss the prognostic implication of this genetic variant, while reviewing previously reported AML-MLL-SEPT6 cases.
Collapse
Affiliation(s)
- Alain Chebly
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | | | - Tony Yammine
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rima Korban
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Warde Semaan
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jessica Bou Zeid
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Chantal Farra
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Department of Genetics, Hotel Dieu de France Medical Center, Beirut, Lebanon
| |
Collapse
|
5
|
Hong Y, Li X, Zhu J. LSD1-mediated stabilization of SEPT6 protein activates the TGF-β1 pathway and regulates non-small-cell lung cancer metastasis. Cancer Gene Ther 2021; 29:189-201. [PMID: 33664458 DOI: 10.1038/s41417-021-00297-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 01/21/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent cancer with unfavorable prognosis. Over the past decade accumulating studies have reported an involvement of lysine-specific histone demethylase 1 (LSD1) in NSCLC development. Here, we aimed to explore whether LSD1 affects the metastasis of NSCLC by mediating Septin 6 (SEPT6) through the TGF-β1 pathway. RT-qPCR was used to determine LSD1 and SEPT6 expression in NSCLC tissues and cells. Interactions between LSD1, SEPT6, and TGF-β1 were detected using lentivirus-mediated silencing of LSD1 and overexpression of SEPT6. The role of LSD1 and SEPT6 in mediating the biological behavior of NSCLC cells was determined using the EdU proliferation assay, Transwell assay, and flow cytometry. Thereafter, transplanted cell tumors into nude mice were used to explore the in vivo effects of LSD1 and SEPT6 on metastasis of NSCLC. LSD1 and SEPT6 were overexpressed in NSCLC tissue and cell samples. LSD1 could demethylate the promoter of the SEPT6 to positively regulate SEPT6 expression. LSD1 promoted proliferation, migration, and invasion, while suppressing the apoptosis of NSCLC cells by increasing SEPT6 expression. LSD1-mediated SEPT6 accelerated in vivo NSCLC metastasis through the TGF-β1/Smad pathway. Collectively, LSD1 demethylates SEPT6 promoter to upregulate SEPT6, which activates TGF-β1 pathway, thereby promoting metastasis of NSCLC.
Collapse
Affiliation(s)
- Yanni Hong
- Department of Oncology, Quanzhou First Hospital Affiliated Fujian Medical University, Quanzhou, P.R. China.
| | - Xiaofeng Li
- Department of Oncology, Quanzhou First Hospital Affiliated Fujian Medical University, Quanzhou, P.R. China
| | - Jinfeng Zhu
- Department of Oncology, Quanzhou First Hospital Affiliated Fujian Medical University, Quanzhou, P.R. China
| |
Collapse
|
6
|
Fung KYY, Dai L, Trimble WS. Cell and molecular biology of septins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:289-339. [PMID: 24725429 DOI: 10.1016/b978-0-12-800180-6.00007-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Septins are a family of GTP-binding proteins that assemble into cytoskeletal filaments. Unlike other cytoskeletal components, septins form ordered arrays of defined stoichiometry that can polymerize into long filaments and bundle laterally. Septins associate directly with membranes and have been implicated in providing membrane stability and serving as diffusion barriers for membrane proteins. In addition, septins bind other proteins and have been shown to function as multimolecular scaffolds by recruiting components of signaling pathways. Remarkably, septins participate in a spectrum of cellular processes including cytokinesis, ciliogenesis, cell migration, polarity, and cell-pathogen interactions. Given their breadth of functions, it is not surprising that septin abnormalities have also been linked to human diseases. In this review, we discuss the current knowledge of septin structure, assembly and function, and discuss these in the context of human disease.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Lu Dai
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Connolly D, Abdesselam I, Verdier-Pinard P, Montagna C. Septin roles in tumorigenesis. Biol Chem 2011; 392:725-38. [PMID: 21740328 DOI: 10.1515/bc.2011.073] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Septins are a family of cytoskeleton related proteins consisting of 14 members that associate and interact with actin and tubulin. From yeast to humans, septins maintain a conserved role in cytokinesis and they are also involved in a variety of other cellular functions including chromosome segregation, DNA repair, migration and apoptosis. Tumorigenesis entails major alterations in these processes. A substantial body of literature reveals that septins are overexpressed, downregulated or generate chimeric proteins with MLL in a plethora of solid tumors and in hematological malignancies. Thus, members of this gene family are emerging as key players in tumorigenesis. The analysis of septins during cancer initiation and progression is challenged by the presence of many family members and by their potential to produce numerous isoforms. However, the development and application of advanced technologies is allowing for a more detailed analysis of septins during tumorigenesis. Specifically, such applications have led to the establishment and validation of SEPT9 as a biomarker for the early detection of colorectal cancer. This review summarizes the current knowledge on the role of septins in tumorigenesis, emphasizing their significance and supporting their use as potential biomarkers in various cancer types.
Collapse
Affiliation(s)
- Diana Connolly
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
8
|
Cerveira N, Bizarro S, Teixeira MR. MLL-SEPTIN gene fusions in hematological malignancies. Biol Chem 2011; 392:713-24. [PMID: 21714766 DOI: 10.1515/bc.2011.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Nuno Cerveira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | | |
Collapse
|
9
|
De Braekeleer E, Meyer C, Douet-Guilbert N, Morel F, Le Bris MJ, Berthou C, Arnaud B, Marschalek R, Férec C, De Braekeleer M. Complex and cryptic chromosomal rearrangements involving the MLL gene in acute leukemia: A study of 7 patients and review of the literature. Blood Cells Mol Dis 2010; 44:268-74. [DOI: 10.1016/j.bcmd.2010.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/03/2010] [Indexed: 11/30/2022]
|
10
|
HYBRIDdb: a database of hybrid genes in the human genome. BMC Genomics 2007; 8:128. [PMID: 17519042 PMCID: PMC1890557 DOI: 10.1186/1471-2164-8-128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 05/23/2007] [Indexed: 11/30/2022] Open
Abstract
Background Hybrid genes are candidate risk factors for human tumors by inducing mutation, translocation, inversion, or rearrangement of genes. The occurrence of hybrid genes may also have given rise to new transcripts during hominid evolution. Description HYBRIDdb is a database of hybrid genes in humans. This system encompasses the bioinformatics analysis of mRNA, EST, cDNA, and genomic DNA sequences in the INDC databases, and can be used to identify hybrid genes. We searched for hybrid genes among the 28,171 genes listed in the NCBI database, and analyzed their structural patterns in the human genome. The 2,344 gene pairs were detected as hybrid forms of transcriptional products. We classified the hybrid genes into two groups: chromosomal-mediated translocation fusion transcripts and transcription-mediated fusion transcripts. Conclusion The HYBRIDdb database will provide genome scientists with insight into potential roles for hybrid genes in human evolution and disease.
Collapse
|