1
|
Focal Epithelial Hyperplasia. Viruses 2021; 13:v13081529. [PMID: 34452393 PMCID: PMC8402694 DOI: 10.3390/v13081529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/18/2023] Open
Abstract
Focal epithelial hyperplasia (FEH) or Heck’s disease is a rare, benign, oral condition that is associated with infection by human papillomavirus type 13, 32 or both. The whiteish to mucosal-colored, soft, papular or nodular elevated lesions in the oral cavity are normally asymptomatic but can grow to a size or at a location where treatment is needed. The diagnosis is often based on clinical presentation and histopathology, and the HPV genotype can be determined using PCR utilizing specific primers or DNA sequencing. While FEH was reported to often affect several members of the same family and exist primarily among indigenous populations around the world, the number of reported cases within the European region is increasing. This contemporary review summarizes the main findings in relation to HPV genotypes, impact of superinfection exclusion and vaccination, transmission, diagnosis, geographical and ethnical distribution, comorbidities and treatment of FEH with an emphasis on including the most recent case reports within the field. Furthermore, we describe for the first time a FEH lesion infected with the low-risk HPV90.
Collapse
|
2
|
Bubie A, Zoulim F, Testoni B, Miles B, Posner M, Villanueva A, Losic B. Landscape of oncoviral genotype and co-infection via human papilloma and hepatitis B viral tumor in situ profiling. iScience 2021; 24:102368. [PMID: 33889830 PMCID: PMC8050859 DOI: 10.1016/j.isci.2021.102368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The role of oncoviral genotype and co-infection driving oncogenesis remains unclear. We have developed a scalable, high throughput tool for sensitive and precise oncoviral genotype deconvolution. Using tumor RNA sequencing data, we applied it to 537 virally infected liver, cervical, and head and neck tumors, providing the first comprehensive integrative landscape of tumor-viral gene expression, viral antigen immunogenicity, patient survival, and mutational profiling organized by tumor oncoviral genotype. We find that HBV and HPV genotype and co-infection serve as significant predictors of patient survival and immune activation. Finally, we demonstrate that HPV genotype is more associated with viral oncogene expression than cancer type, implying that expression may be similar across episomal and stochastic integration-based infections. While oncoviral infections are known risk factors for oncogenesis, viral genotype and co-infection are shown to strongly associate with disease progression, patient survival, mutational signatures, and putative tumor neoantigen immunogenicity, facilitating novel clinical associations with infections. ViralMine parses oncoviral genotypes and co-infection from in situ tumor data Oncoviral genotyping of TCGA CESC, HNSC, and LIHC cohorts Tumor fitness, immunogenicity, and mutational signatures associate with oncoviral genotype
Collapse
Affiliation(s)
- Adrian Bubie
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Fabien Zoulim
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Barbara Testoni
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Brett Miles
- Department of Otolaryngology Head and Neck Surgery, New York, NY 10029, USA
| | - Marshall Posner
- Division of Hematology Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Augusto Villanueva
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA.,Division of Liver Diseases, Division of Hematology/Oncology, Department of Medicine, Graduate School of Biomedical Sciences, Tisch Cancer Institute, Diabetes, Obesity, and Metabolism Institute, New York, NY 10029, USA
| | - Bojan Losic
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA.,Division of Liver Diseases, Division of Hematology/Oncology, Department of Medicine, Graduate School of Biomedical Sciences, Tisch Cancer Institute, Diabetes, Obesity, and Metabolism Institute, New York, NY 10029, USA
| |
Collapse
|
3
|
Superinfection Exclusion between Two High-Risk Human Papillomavirus Types during a Coinfection. J Virol 2018; 92:JVI.01993-17. [PMID: 29437958 DOI: 10.1128/jvi.01993-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
Superinfection exclusion is a common phenomenon whereby a single cell is unable to be infected by two types of the same pathogen. Superinfection exclusion has been described for various viruses, including vaccinia virus, measles virus, hepatitis C virus, influenza A virus, and human immunodeficiency virus. Additionally, the mechanism of exclusion has been observed at various steps of the viral life cycle, including attachment, entry, viral genomic replication, transcription, and exocytosis. Human papillomavirus (HPV) is the causative agent of cervical cancer. Recent epidemiological studies indicate that up to 50% women who are HPV positive (HPV+) are infected with more than one HPV type. However, no mechanism of superinfection exclusion has ever been identified for HPV. Here, we show that superinfection exclusion exists during a HPV coinfection and that it occurs on the cell surface during the attachment/entry phase of the viral life cycle. Additionally, we are able to show that the minor capsid protein L2 plays a role in this exclusion. This study shows, for the first time, that superinfection exclusion occurs during HPV coinfections and describes a potential molecular mechanism through which it occurs.IMPORTANCE Superinfection exclusion is a phenomenon whereby one cell is unable to be infected by multiple related pathogens. This phenomenon has been described for many viruses and has been shown to occur at various points in the viral life cycle. HPV is the causative agent of cervical cancer and is involved in other anogenital and oropharyngeal cancers. Recent epidemiological research has shown that up to 50% of HPV-positive individuals harbor more than one type of HPV. We investigated the interaction between two high-risk HPV types, HPV16 and HPV18, during a coinfection. We present data showing that HPV16 is able to block or exclude HPV18 on the cell surface during a coinfection. This exclusion is due in part to differences in the HPV minor capsid protein L2. This report provides, for the first time, evidence of superinfection exclusion for HPV and leads to a better understanding of the complex interactions between multiple HPV types during coinfections.
Collapse
|
4
|
Prognostic value and clinicopathologic characteristics of L1 cell adhesion molecule (L1CAM) in a large series of vulvar squamous cell carcinomas. Oncotarget 2018; 7:26192-205. [PMID: 27028855 PMCID: PMC5041974 DOI: 10.18632/oncotarget.8353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
Background Vulvar cancer treatment is mostly curative, but also has high morbidity rates. In a search for markers that can identify patients at risk of metastases, we investigated the prognostic value of L1-cell adhesion molecule (L1CAM) in large series of vulvar squamous cell carcinomas (VSCCs). L1CAM promotes cell motility and is an emerging prognostic factor for metastasis in many cancer subtypes. Results L1CAM expression was observed at the invasive front or in spray-patterned parts of 17% of the tumours. L1CAM-positive tumours expressed vimentin more often, but L1CAM expression was not associated with TP53 or CTNNB1 mutations. Five-year survival was worse for patients with L1CAM expression (overall survival 46.1% vs 63.6%, P=.014, disease specific survival 63.8% vs 80.0%, P=.018). Multivariate analysis indicates L1CAM expression as an independent prognostic marker (HR 2.9, 95% CI 1.10–7.68). An in vitro spheroid invasion assay showed decreased invasion of L1CAM-expressing VSCC spindle cells after treatment with L1CAM-neutralising antibodies. Materials and Methods Paraffin-embedded tumour tissue from two cohorts (N=103 and 245) of primary VSCCs were stained for L1CAM, vimentin and E-cadherin. Patients of the first cohort were tested for human papilloma virus infection and sequenced for TP53 and CTNNB1 (β-catenin) mutations. The expression of L1CAM was correlated to clinical characteristics and patient survival. Conclusion This is the first study to show high L1CAM-expression at the infiltrating margin of VSCC's. L1CAM-expressing VSCCs had a significantly worse prognosis compared to L1CAM-negative tumours. The highest expression was observed in spindle-shaped cells, where it might be correlated to their invasive capacity.
Collapse
|
5
|
Trietsch MD, Spaans VM, ter Haar NT, Osse EM, Peters AAW, Gaarenstroom KN, Fleuren GJ. CDKN2A(p16) and HRAS are frequently mutated in vulvar squamous cell carcinoma. Gynecol Oncol 2014; 135:149-55. [PMID: 25072932 DOI: 10.1016/j.ygyno.2014.07.094] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Two etiologic pathways of vulvar cancer are known, a human papillomavirus (HPV)- and a TP53-associated route, respectively, but other genetic changes may also play a role. Studies on somatic mutations in vulvar cancer other than TP53 are limited in number and size. In this study, we investigated the prevalence of genetic mutations in 107 vulvar squamous cell carcinomas (VSCCs). METHODS A total of 107 paraffin-embedded tissue samples of primarily surgically treated VSCCs were tested for HPV infection and screened for mutations in 14 genes (BRAF, CDKN2A(p16), CTNNB1, FBXW7, FGFR2, FGFR3, FOXL2, HRAS, KRAS, NRAS, PIK3CA, PPP2R1A, PTEN, and TP53) using Sanger sequencing and mass spectrometry. RESULTS Mutations were detected in 7 genes. Of 107 VSCCs, 66 tumors (62%) contained at least one mutation (TP53=58, CDKN2A(p16)=14, HRAS=10, PIK3CA=7, PPP2R1A=3, KRAS=1, PTEN=1). Mutations occurred most frequently in HPV-negative samples. Five-year survival was significantly worse for patients with a mutation (47% vs 59%, P=.035), with a large effect from patients carrying HRAS-mutations. CONCLUSION Somatic mutations were detected in 62% of VSCCs. As expected, HPV infection and TP53-mutations play a key role in the development of VSCC, but CDKN2A(p16), HRAS, and PIK3CA-mutations were also frequently seen in HPV-negative patients. Patients with somatic mutations, especially HRAS-mutations, have a significantly worse prognosis than patients lacking these changes, which could be of importance for the development of targeted therapy.
Collapse
Affiliation(s)
| | - Vivian M Spaans
- Department of Pathology, Leiden University Medical Center, The Netherlands; Department of Gynecology, Leiden University Medical Center, The Netherlands
| | - Natalja T ter Haar
- Department of Pathology, Leiden University Medical Center, The Netherlands
| | - Elisabeth M Osse
- Department of Pathology, Leiden University Medical Center, The Netherlands
| | | | | | - Gert Jan Fleuren
- Department of Pathology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
6
|
Mori S, Kusumoto-Matsuo R, Ishii Y, Takeuchi T, Kukimoto I. Replication interference between human papillomavirus types 16 and 18 mediated by heterologous E1 helicases. Virol J 2014; 11:11. [PMID: 24456830 PMCID: PMC3904167 DOI: 10.1186/1743-422x-11-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/21/2014] [Indexed: 11/20/2022] Open
Abstract
Background Co-infection of multiple genotypes of human papillomavirus (HPV) is commonly observed among women with abnormal cervical cytology, but how different HPVs interact with each other in the same cell is not clearly understood. A previous study using cultured keratinocytes revealed that genome replication of one HPV type is inhibited by co-existence of the genome of another HPV type, suggesting that replication interference occurs between different HPV types when co-infected; however, molecular mechanisms underlying inter-type replication interference have not been fully explored. Methods Replication interference between two most prevalent HPV types, HPV16 and HPV18, was examined in HPV-negative C33A cervical carcinoma cells co-transfected with genomes of HPV16 and HPV18 together with expression plasmids for E1/E2 of both types. Levels of HPV16/18 genome replication were measured by quantitative real-time PCR. Physical interaction between HPV16/18 E1s was assessed by co-immunoprecipitation assays in the cell lysates. Results The replication of HPV16 and HPV18 genomes was suppressed by co-expression of E1/E2 of heterologous types. The interference was mediated by the heterologous E1, but not E2. The oligomerization domain of HPV16 E1 was essential for HPV18 replication inhibition, whereas the helicase domain was dispensable. HPV16 E1 co-precipitated with HPV18 E1 in the cell lysates, and an HPV16 E1 mutant Y379A, which bound to HPV18 E1 less efficiently, failed to inhibit HPV18 replication. Conclusions Co-infection of a single cell with both HPV16 and HPV18 results in replication interference between them, and physical interaction between the heterologous E1s is responsible for the interference. Heterooligomers composed of HPV16/18 E1s may lack the ability to support HPV genome replication.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan.
| | | | | | | | | |
Collapse
|
7
|
Trietsch MD, Peters AAW, Gaarenstroom KN, van Koningsbrugge SHL, ter Haar NT, Osse EM, Halbesma N, Fleuren GJ. Spindle cell morphology is related to poor prognosis in vulvar squamous cell carcinoma. Br J Cancer 2013; 109:2259-65. [PMID: 24064972 PMCID: PMC3798963 DOI: 10.1038/bjc.2013.563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 01/18/2023] Open
Abstract
Background: Vulvar cancer is the fourth most common gynaecological malignancy, with an annual incidence of 2 out of 100 000 women. Although most cases of early stage vulvar cancer have a good prognosis, recurrence and rapid tumour progression can occur. We investigated the prevalence of spindle cell morphology in vulvar cancer and its association with survival. Methods: This retrospective cohort study included 108 patients with primary vulvar squamous cell carcinoma who were treated at the Leiden University Medical Center during 2000–2009. Paraffin-embedded tissue was examined for the presence of spindle cell morphology. Survival and histology data were compared between cases with spindle and without spindle cell morphology. Results: Twenty-two (20%) tumours showed spindle cells infiltrating the stromal tissue. All spindle cell tumours were human papillomavirus (HPV) negative. Spindle cell morphology was strongly associated with poor prognosis and with a high risk of lymph node involvement at the time of diagnosis (relative risk 2.26 (95% CI 1.47–3.47)). Five-year disease-specific survival was lower in patients with vs without spindle cell morphology (45.2% vs 79.7%, respectively; P=0.00057). Conclusion: Vulvar spindle cell morphology occurs frequently and seems to develop through the non-HPV pathway. It is associated with a worse prognosis than conventional vulvar squamous cell carcinoma.
Collapse
Affiliation(s)
- M D Trietsch
- Department of Pathology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Watari H, Michimata R, Yasuda M, Ishizu A, Tomaru U, Xiong Y, Hassan MK, Sakuragi N. High Prevalence of Multiple Human Papillomavirus Infection in Japanese Patients with Invasive Uterine Cervical Cancer. Pathobiology 2011; 78:220-6. [DOI: 10.1159/000326770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/23/2011] [Indexed: 11/19/2022] Open
|
9
|
Robertson KL, Verhoeven AB, Thach DC, Chang EL. Monitoring viral RNA in infected cells with LNA flow-FISH. RNA (NEW YORK, N.Y.) 2010; 16:1679-85. [PMID: 20584898 PMCID: PMC2905765 DOI: 10.1261/rna.2016410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We previously showed the feasibility of using locked nucleic acid (LNA) for flow cytometric-fluorescence in situ hybridization (LNA flow-FISH) detection of a target cellular mRNA. Here we demonstrate how the method can be used to monitor viral RNA in infected cells. We compared the results of the LNA flow-FISH with other methods of quantifying virus replication, including the use of an enhanced green fluorescent protein (EGFP) viral construct and quantitative reverse-transcription polymerase chain reaction. We found that an LNA probe complementary to Sindbis virus RNA is able to track the increase in viral RNA over time in early infection. In addition, this method is comparable to the EGFP construct in sensitivity, with both peaking around 3 h and at the same level of infected cells. Finally, we observed that the LNA flow-FISH method responds to the decrease in levels of viral RNA caused by antiviral medication. This technique represents a straightforward way to monitor viral infection in cells and is easily applicable to any virus.
Collapse
Affiliation(s)
- Kelly L Robertson
- Laboratory for Biosensors and Biomaterials, Code 6910, Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | |
Collapse
|
10
|
Lehoux M, D'Abramo CM, Archambault J. Molecular mechanisms of human papillomavirus-induced carcinogenesis. Public Health Genomics 2009; 12:268-80. [PMID: 19684440 DOI: 10.1159/000214918] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Approximately 20% of all cancers are associated with infectious agents. Among them, human papillomaviruses (HPVs) are very common and are now recognized as the etiological agent of cervical cancer, the second most common cancer in women worldwide, and they are increasingly linked with other forms of dysplasia. Carcinogenesis is a complex and multistep process requiring the acquisition of several genetic and/or epigenetic alterations. HPV-induced neoplasia, however, is in part mediated by the intrinsic functions of the viral proteins. In order to replicate its genome, HPV modulates the cell cycle, while deploying mechanisms to escape the host immune response, cellular senescence and apoptosis. As such, HPV infection leads directly and indirectly to genomic instability, further favouring transforming genetic events and progression to malignancy. This review aims to summarize our current understanding of the molecular mechanisms exploited by HPV to induce neoplasia, with an emphasis on the role of the 2 viral oncoproteins E6 and E7. Greater understanding of the role of HPV proteins in these processes will ultimately aid in the development of antiviral therapies, as well as unravel general mechanisms of oncogenesis.
Collapse
Affiliation(s)
- Michaël Lehoux
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal, Montreal, Que., H2W 1R7 Canada
| | | | | |
Collapse
|
11
|
Spinillo A, Dal Bello B, Alberizzi P, Cesari S, Gardella B, Roccio M, Silini EM. Clustering patterns of human papillomavirus genotypes in multiple infections. Virus Res 2009; 142:154-9. [DOI: 10.1016/j.virusres.2009.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 11/16/2022]
|