1
|
Liu X, Bai W, Li J, Ma J, Liu Y, Wang Z, Hu L, Li Z, Papukashvili D, Rcheulishvili N, Wang F, Lu X. MLLT11 siRNA Inhibits the Migration and Promotes the Apoptosis of MDA-MB-231 Breast Cancer Cells. Breast J 2023; 2023:6282654. [PMID: 38075552 PMCID: PMC10708952 DOI: 10.1155/2023/6282654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Breast cancer is considered the most prevalent malignancy due to its high incidence rate, recurrence, and metastasis in women that makes it one of the deadliest cancers. The current study aimed to predict the genes associated with the recurrence and metastasis of breast cancer and to validate their effect on MDA-MB-231 cells. Through the bioinformatics analysis, the transcription factor 7 cofactor (MLLT11) as the target gene was obtained. MLLT11-specific siRNA was synthesized and transfected into MDA-MB-231 cells. The results demonstrated that the siRNA significantly reduced the MLLT11 mRNA levels. Moreover, cell migration and invasion, as well as the protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, matrix metalloproteinase (MMP) 2, and MMP9, were significantly lower in the groups treated with siRNA while the apoptosis was augmented. Collectively, MLLT11 siRNA elicited ameliorative properties on breast cancer cells, possibly via the inhibition of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiangrong Liu
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Wenqi Bai
- Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jianrong Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Yan Liu
- Shanxi Medical University, Taiyuan 030006, China
| | | | - Linjie Hu
- Shanxi Medical University, Taiyuan 030006, China
| | - Zheng Li
- Shanxi Medical University, Taiyuan 030006, China
| | | | | | - Fusheng Wang
- Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
2
|
Dumbović G, Biayna J, Banús J, Samuelsson J, Roth A, Diederichs S, Alonso S, Buschbeck M, Perucho M, Forcales SV. A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Res 2018; 46:5504-5524. [PMID: 29912433 PMCID: PMC6009586 DOI: 10.1093/nar/gky263] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/19/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
Primate-specific NBL2 macrosatellite is hypomethylated in several types of tumors, yet the consequences of this DNA hypomethylation remain unknown. We show that NBL2 conserved repeats are close to the centromeres of most acrocentric chromosomes. NBL2 associates with the perinucleolar region and undergoes severe demethylation in a subset of colorectal cancer (CRC). Upon DNA hypomethylation and histone acetylation, NBL2 repeats are transcribed in tumor cell lines and primary CRCs. NBL2 monomers exhibit promoter activity, and are contained within novel, non-polyA antisense lncRNAs, which we designated TNBL (Tumor-associated NBL2 transcript). TNBL is stable throughout the mitotic cycle, and in interphase nuclei preferentially forms a perinucleolar aggregate in the proximity of a subset of NBL2 loci. TNBL aggregates interact with the SAM68 perinucleolar body in a mirror-image cancer specific perinucleolar structure. TNBL binds with high affinity to several proteins involved in nuclear functions and RNA metabolism, such as CELF1 and NPM1. Our data unveil novel DNA and RNA structural features of a non-coding macrosatellite frequently altered in cancer.
Collapse
Affiliation(s)
- Gabrijela Dumbović
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | - Josep Biayna
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Carrer de Baldiri Reixac, 10–12, Barcelona 08028, Spain
| | - Jordi Banús
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | | | - Anna Roth
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center – University of Freiburg & Faculty of Medicine, University of Freiburg & German Cancer Consortium (DKTK), Freiburg, Germany
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | - Marcus Buschbeck
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona, Barcelona 08916, Spain
| | - Manuel Perucho
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Sanford-Burnham-Prebys Medical Discovery Institute (SBP), 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sonia-V Forcales
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Carrer de la Feixa Llarga, s/n, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
3
|
Yang L, Zhang J, Chen J, Jin H, Liu J, Huang S, Cui Z. The Expression of CUGBP1 After Spinal Cord Injury in Rats. Neurochem Res 2015; 40:1966-75. [PMID: 26283512 DOI: 10.1007/s11064-015-1692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 01/30/2023]
Abstract
CUG-binding protein 1, a member of the CELF (CUGBP and embryonic lethal abnormal vision-like factor) family of RNA-binding proteins, is shown to be multifunctional, regulating many posttranscriptional processes including alternative splicing, deadenylation, mRNA decay, and translation. Recently, CUGBP1 is found to represses p27 IRES activity and inhibits expression of endogenous p27 in cultured breast cancer cells. However, the roles of CUGBP1 in central nervous system injury remain unknown. In our study, we performed acute spinal cord injury (SCI) model in adult rats in order to research the expression changes of CUGBP1 in spinal cord. Western blot analysis showed a marked upregulation of CUGBP1 after SCI. Immunohistochemistry analysis revealed a wide distribution of CUGBP1 in the spinal cord. Double immunofluorescence staining indicated that CUGBP1 immunoreactivity was increased predominantly in neurons and astrocytes after SCI. Moreover, colocalization of CUGBP1/proliferating cell nuclear antigen (PCNA) was detected in GFAP positive cells. We also examined the expression profiles of p27, which was up-regulated after SCI. To further understand whether CUGBP1 plays a role in astrocyte proliferation, we applied LPS to induce astrocyte proliferation in vitro. Western blot analysis demonstrated that CUGBP1 expression was positively correlated with PCNA expression, and the p27 expression was negatively correlated with CUGBP1 expression following LPS stimulation. Our results suggest that CUGBP1 might be implicated in the pathophysiology of spinal cord after SCI.
Collapse
Affiliation(s)
- Longfei Yang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
4
|
Liu L, Ouyang M, Rao JN, Zou T, Xiao L, Chung HK, Wu J, Donahue JM, Gorospe M, Wang JY. Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal. Mol Biol Cell 2015; 26:1797-810. [PMID: 25808495 PMCID: PMC4436827 DOI: 10.1091/mbc.e14-11-1500] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/16/2015] [Indexed: 12/17/2022] Open
Abstract
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3'-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3'-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth.
Collapse
Affiliation(s)
- Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Miao Ouyang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jing Wu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - James M Donahue
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
5
|
Zhou Y, Ma H, Fang J, Lian M, Feng L, Wang R. Knockdown of CUG-binding protein 1 induces apoptosis of human laryngeal cancer cells. Cell Biol Int 2014; 38:1408-14. [PMID: 25077823 DOI: 10.1002/cbin.10356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/28/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Yi Zhou
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing 100730 China
- Department of Otolaryngology; Head and Neck Surgery; The First Affiliated Hospital of Xiamen University; Xiamen 361003 China
| | - Hongzhi Ma
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing 100730 China
| | - Jugao Fang
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing 100730 China
| | - Meng Lian
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing 100730 China
| | - Ling Feng
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing 100730 China
| | - Ru Wang
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing 100730 China
| |
Collapse
|
6
|
Paar C, Herber G, Voskova D, Fridrik M, Stekel H, Berg J. A case of acute myeloid leukemia (AML) with an unreported combination of chromosomal abnormalities: gain of isochromosome 5p, tetrasomy 8 and unbalanced translocation der(19)t(17;19)(q23;p13). Mol Cytogenet 2013; 6:40. [PMID: 24079663 PMCID: PMC3852770 DOI: 10.1186/1755-8166-6-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) comprises a spectrum of myeloid malignancies which are often associated with distinct chromosomal abnormalities, and the analysis of such abnormalities provides us with important information for disease classification, treatment selection and prognosis. Some chromosomal abnormalities albeit recurrent are rare such as tetrasomy 8 or isochromosome 5p. In addition, erratic chromosomal rearrangements may occur in AML, sometimes unbalanced and also accompanied by other abnormalities. Knowledge on the contribution of rare abnormalities to AML disease, progression and prognosis is limited.Here we report a unique case of acute monoblastic leukemia with gain of i(5)(p10), tetrasomy 8, an unbalanced translocation der(19)t(17;19)(q23;p13.3) and mutated NPM1. RESULTS Bone marrow cells were examined by conventional karyotyping, fluorescence in situ hybridization (FISH) and mutation analysis at diagnosis and follow-up. At diagnosis we detected trisomy 8, an unbalanced translocation der(19)t(17;19)(q23;p13.3) and mutated NPM1. During the course of the disease we observed clonal evolution with gain of i(5)(p10), tetrasomy 8 and eventually duplication of der(19)t(17;19)(q23;p13.3). By using the der(19)t(17;19) as clonal marker, we found that i(5)(p10) and tetrasomy 8 were secondary genetic events and that tetrasomy 8 had clonally evolved from trisomy 8. CONCLUSIONS This case of acute monoblastic leukemia presents a combination of rare chromosomal abnormalities including the unbalanced translocation der(19)t(17;19)(q23;p13.3), hitherto un-reported in AML. In addition, our case supports the hypothesis of a step-wise clonal evolution from trisomy 8 to tetrasomy 8 in AML. Reporting and collecting data of rare chromosomal abnormalities will add information to AML disease, progression and prognosis, and may eventually translate to improved patient management.
Collapse
Affiliation(s)
- Christian Paar
- Institute of Laboratory Medicine, General Hospital Linz, Krankenhausstrasse 9, A-4020, Linz, Austria
| | - Gabriele Herber
- Institute of Laboratory Medicine, General Hospital Linz, Krankenhausstrasse 9, A-4020, Linz, Austria
| | - Daniela Voskova
- Department of Medicine III, General Hospital Linz, Krankenhausstrasse 9, A-4020, Linz, Austria
| | - Michael Fridrik
- Department of Medicine III, General Hospital Linz, Krankenhausstrasse 9, A-4020, Linz, Austria
| | - Herbert Stekel
- Institute of Laboratory Medicine, General Hospital Linz, Krankenhausstrasse 9, A-4020, Linz, Austria
| | - Jörg Berg
- Institute of Laboratory Medicine, General Hospital Linz, Krankenhausstrasse 9, A-4020, Linz, Austria
- Institute of Laboratory Medicine, Medical University Graz, Auenbruggerplatz 2, A-8036, Graz, Austria
| |
Collapse
|
7
|
Talwar S, Balasubramanian S, Sundaramurthy S, House R, Wilusz CJ, Kuppuswamy D, D'Silva N, Gillespie MB, Hill EG, Palanisamy V. Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells. RNA Biol 2013; 10:277-86. [PMID: 23324604 PMCID: PMC3594286 DOI: 10.4161/rna.23315] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
CELF1 RNA-binding protein, otherwise called CUGBP1, associates and coordinates the degradation of GU-rich element (GRE) containing mRNA’s encoding factors important for cell growth, migration and apoptosis. Although many substrates of CELF1 have been identified, the biological significance of CELF1-mediated mRNA decay remains unclear. As the processes modulated by CELF1 are frequently disrupted in cancer, we investigated the expression and role of CELF1 in oral squamous cancer cells (OSCCs). We determined that CELF1 is reproducibly overexpressed in OSCC tissues and cell lines. Moreover, depletion of CELF1 reduced proliferation and increased apoptosis in OSCCs, but had negligible effect in non-transformed cells. We found that CELF1 associates directly with the 3′UTR of mRNAs encoding the pro-apoptotic factors BAD, BAX and JunD and mediates their rapid decay. Specifically, 3′UTR fragment analysis of JunD revealed that the GRE region is critical for binding with CELF1 and expression of JunD in oral cancer cells. In addition, silencing of CELF1 rendered BAD, BAX and JunD mRNAs stable and increased their protein expression in oral cancer cells. Taken together, these results support a critical role for CELF1 in modulating apoptosis and implicate this RNA-binding protein as a cancer marker and potential therapeutic target.
Collapse
Affiliation(s)
- Sudha Talwar
- Department of Craniofacial Biology and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee SG, Park TS, Yang JJ, Oh SH, Cho EH, Lee S, Oh D, Huh JY, Marschalek R, Meyer C. Molecular identification of a new splicing variant of the MLL - MLLT11 fusion transcript in an adult with acute myeloid leukemia and t(1;11)(q21;q23). Acta Haematol 2012; 128:131-8. [PMID: 22854283 DOI: 10.1159/000338258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/13/2012] [Indexed: 02/02/2023]
Abstract
More than 70 different mixed lineage leukemia (MLL) rearrangements involving 11q23 have been molecularly characterized in acute leukemia. Among these, the MLLT11 gene is highly unique as MLL fusion partner because the entire open reading frame is usually fused in-frame to the N-terminal portion of the MLL gene. By using molecular genetic methods, we identified the chromosomal fusion site within MLL exon 10 sequences which were fused to the MLLT11 intron 1 sequences. This unusual break site results in the creation of two in-frame MLL-MLLT11 fusion transcripts in this acute myeloid leukemia patient with t(1;11)(q21;q23). One fusion transcript represents a normal splice product, while the other contains intronic sequences and a cryptic splice event in order to generate an intact fusion transcript. We also reviewed all published articles which have reported t(1;11)(q21;q23) in myeloid or lymphoid neoplasm and attempted to summarize these published data. Of interest, pediatric patients displayed a significant larger portion of unique balanced translocations (n = 40), while complex karyotypes were less often identified (n = 12). Vice versa, in adult leukemia patients, complex karyotypes (n = 5) were more frequent than unique balanced translocations (n = 2).
Collapse
Affiliation(s)
- Sang-Guk Lee
- Department of Laboratory Medicine, Armed Forces Capital Hospital, Seongnam, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell Signal 2012; 24:1287-96. [DOI: 10.1016/j.cellsig.2012.02.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/14/2012] [Indexed: 01/10/2023]
|
10
|
Beisang D, Rattenbacher B, Vlasova-St Louis IA, Bohjanen PR. Regulation of CUG-binding protein 1 (CUGBP1) binding to target transcripts upon T cell activation. J Biol Chem 2011; 287:950-60. [PMID: 22117072 DOI: 10.1074/jbc.m111.291658] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The RNA-binding protein, CUG-binding protein 1 (CUGBP1), regulates gene expression at the levels of alternative splicing, mRNA degradation, and translation. We used RNA immunoprecipitation followed by microarray analysis to identify the cytoplasmic mRNA targets of CUGBP1 in resting and activated primary human T cells and found that CUGBP1 targets were highly enriched for the presence of GU-rich elements (GREs) in their 3'-untranslated regions. The number of CUGBP1 target transcripts decreased dramatically following T cell activation as a result of activation-dependent phosphorylation of CUGBP1 and decreased ability of CUGBP1 to bind to GRE-containing RNA. A large percentage of CUGBP1 target transcripts exhibited rapid and transient up-regulation, and a smaller percentage exhibited transient down-regulation following T cell activation. Many of the transiently up-regulated CUGBP1 target transcripts encode important regulatory proteins necessary for transition from a quiescent state to a state of cellular activation and proliferation. Overall, our results show that CUGBP1 binding to certain GRE-containing target transcripts decreased following T cell activation through activation-dependent phosphorylation of CUGBP1.
Collapse
Affiliation(s)
- Daniel Beisang
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
11
|
Duhoux FP, Ameye G, Lambert C, Herman M, Iossifidis S, Constantinescu SN, Libouton JM, Demoulin JB, Poirel HA. Novel head-to-head gene fusion of MLL with ZC3H13 in a JAK2 V617F-positive patient with essential thrombocythemia without blast cells. Leuk Res 2011; 36:e27-30. [PMID: 21962339 DOI: 10.1016/j.leukres.2011.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/18/2011] [Accepted: 09/05/2011] [Indexed: 11/16/2022]
|
12
|
Zhang K, Li J, Meng W, Xing H, Yang Y. C/EBPβ and CHOP participate in tanshinone IIA-induced differentiation and apoptosis of acute promyelocytic leukemia cells in vitro. Int J Hematol 2010; 92:571-8. [PMID: 20981511 DOI: 10.1007/s12185-010-0686-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/16/2010] [Accepted: 08/31/2010] [Indexed: 01/03/2023]
Abstract
Our studies indicated that Tanshinone IIA (TanIIA), which is widely applied in the treatment of cardiovascular diseases with a rare occurrence of side effects, could promote APL cell differentiation and apoptosis. We found TanIIA induced the differentiation of NB4 and MR2 cells with elevated C/EBPβ and CHOP. When C/EBPβ was overexpressed in NB4 cells, the level of CD11b in the transfected cells was significantly elevated. When we used CHOP siRNA to suppress CHOP expression in NB4 cells and then treated these cells with a high concentration of TanIIA, the differentiation and apoptosis of these cells were both significantly increased. These data demonstrate that C/EBPβ is critical for APL cell differentiation and apoptosis induced by TanIIA, and that CHOP acts as a negative regulator of C/EBPβ activity. Our study suggested that TanIIA is a promising drug for treating newly diagnosed and ATRA-resistant APL, and a high concentration of TanIIA associated with inhibition of CHOP, maybe a potentially promising therapy strategy.
Collapse
Affiliation(s)
- Kaiji Zhang
- Department of Hematology, West China Medical School, Sichuan University, Chengdu 610041, Sichuan, China
| | | | | | | | | |
Collapse
|
13
|
Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1. Exp Cell Res 2008; 314:2266-78. [PMID: 18570922 DOI: 10.1016/j.yexcr.2008.04.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/02/2008] [Accepted: 04/22/2008] [Indexed: 11/20/2022]
Abstract
Differentiation of myocytes is impaired in patients with myotonic dystrophy type 1, DM1. CUG repeat binding protein, CUGBP1, is a key regulator of translation of proteins that are involved in muscle development and differentiation. In this paper, we present evidence that RNA-binding activity of CUGBP1 and its interactions with initiation translation complex eIF2 are differentially regulated during myogenesis by specific phosphorylation and that this regulation is altered in DM1. In normal myoblasts, Akt kinase phosphorylates CUGBP1 at Ser28 and increases interactions of CUGBP1 with cyclin D1 mRNA. During differentiation, CUGBP1 is phosphorylated by cyclinD3-cdk4/6 at Ser302, which increases CUGBP1 binding with p21 and C/EBPbeta mRNAs. While cyclin D3 and cdk4 are elevated in normal myotubes; DM1 differentiating cells do not increase these proteins. In normal myotubes, CUGBP1 interacts with cyclin D3/cdk4/6 and eIF2; however, interactions of CUGBP1 with eIF2 are reduced in DM1 differentiating cells and correlate with impaired muscle differentiation in DM1. Ectopic expression of cyclin D3 in DM1 cells increases the CUGBP1-eIF2 complex, corrects expression of differentiation markers, myogenin and desmin, and enhances fusion of DM1 myoblasts. Thus, normalization of cyclin D3 might be a therapeutic approach to correct differentiation of skeletal muscle in DM1 patients.
Collapse
|
14
|
Soler G, Radford I, Meyer C, Marschalek R, Brouzes C, Ghez D, Romana S, Berger R. MLL insertion with MLL-MLLT3 gene fusion in acute leukemia: case report and review of the literature. ACTA ACUST UNITED AC 2008; 183:53-9. [DOI: 10.1016/j.cancergencyto.2008.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/16/2008] [Accepted: 01/28/2008] [Indexed: 11/27/2022]
|