1
|
Hiller-Vallina S, Mondejar-Ruescas L, Caamaño-Moreno M, Cómitre-Mariano B, Alcivar-López D, Sepulveda JM, Hernández-Laín A, Pérez-Núñez Á, Segura-Collar B, Gargini R. Sexual-biased necroinflammation is revealed as a predictor of bevacizumab benefit in glioblastoma. Neuro Oncol 2024; 26:1213-1227. [PMID: 38411438 PMCID: PMC11226871 DOI: 10.1093/neuonc/noae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly malignant brain tumor that affects men more often than women. In addition, the former shows a poorer survival prognosis. To date, the reason for this sex-specific aggressiveness remains unclear. Therefore, the aim of this study is to investigate tumor processes that explain these sex differences. METHODS This was a retrospective study of GBM patients which was stratified according to sex. A cohort with 73 tumors was analyzed with immunohistochemistry, RNA-seq and RT-qPCR to characterize differences in vascular and immunological profiles. Transcriptomic profiling, gene set enrichment analysis, and pathway enrichment analysis were used for discovering molecular pathways predominant in each group. We further investigated the therapeutic effect of bevacizumab (vascular endothelial growth factor A (VEGFA) blocking antibody) in a retrospective GBM cohort (36 tumors) based on sex differences. RESULTS We found that under hypoxic tumor conditions, 2 distinct tumor immuno-angiogenic ecosystems develop linked to sex differences and ESR1 expression is generated. One of these subgroups, which includes male patients with low ESR1 expression, is characterized by vascular fragility associated with the appearance of regions of necrosis and high inflammation (called necroinflamed tumors). This male-specific tumor subtype shows high inflammation related to myeloid-derived suppressor cells infiltration. Using this stratification, we identified a possible group of patients who could respond to bevacizumab (BVZ) and revealed a genetic signature that may find clinical applications as a predictor of those who may benefit most from this treatment. CONCLUSIONS This study provides a stratification based on the sexual differences in GBM, which associates the poor prognosis with the presence of immunosuppressive myeloid cells in the necrotic areas. This new stratification could change the current prognosis of GBM and identifies those who respond to BVZ treatment.
Collapse
Affiliation(s)
- Sara Hiller-Vallina
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Lucia Mondejar-Ruescas
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Caamaño-Moreno
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Blanca Cómitre-Mariano
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Denisse Alcivar-López
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan M Sepulveda
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Aurelio Hernández-Laín
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ángel Pérez-Núñez
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Neurosurgery, 12 de Octubre University Hospital (i+12), Madrid, Spain
| | - Berta Segura-Collar
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ricardo Gargini
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
2
|
Simińska D, Kojder K, Jeżewski D, Tarnowski M, Tomasiak P, Piotrowska K, Kolasa A, Patrycja K, Chlubek D, Baranowska-Bosiacka I. Estrogen α and β Receptor Expression in the Various Regions of Resected Glioblastoma Multiforme Tumors and in an In Vitro Model. Int J Mol Sci 2024; 25:4130. [PMID: 38612938 PMCID: PMC11012502 DOI: 10.3390/ijms25074130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor with a higher prevalence in men and a higher survival rate in transmenopausal women. It exhibits distinct areas influenced by changing environmental conditions. This study examines how these areas differ in the levels of estrogen receptors (ERs) which play an important role in the development and progression of many cancers, and whose expression levels are often correlated with patient survival. This study utilized two research models: an in vitro model employing the U87 cell line and a second model involving tumors resected from patients (including tumor core, enhancing tumor region, and peritumoral area). ER expression was assessed at both gene and protein levels, with the results validated using confocal microscopy and immunohistochemistry. Under hypoxic conditions, the U87 line displayed a decrease in ERβ mRNA expression and an increase in ERα mRNA expression. In patient samples, ERβ mRNA expression was lower in the tumor core compared to the enhancing tumor region (only in males when the study group was divided by sex). In addition, ERβ protein expression was lower in the tumor core than in the peritumoral area (only in women when the study group was divided by sex). Immunohistochemical analysis indicated the highest ERβ protein expression in the enhancing tumor area, followed by the peritumoral area, and the lowest in the tumor core. The findings suggest that ER expression may significantly influence the development of GBM, exhibiting variability under the influence of conditions present in different tumor areas.
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland;
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland;
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Kapczuk Patrycja
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (D.S.); (K.P.); (I.B.-B.)
| |
Collapse
|
3
|
Hirtz A, Rech F, Dubois-Pot-Schneider H, Dumond H. Estrogen signaling in healthy and tumor brain. Steroids 2023; 199:109285. [PMID: 37543222 DOI: 10.1016/j.steroids.2023.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Sex-specific differences in brain organization and function are widely explored in multidisciplinary studies, ranging from sociology and biology to digital modelling. In addition, there is growing evidence that natural or disturbed hormonal environments play a crucial role in the onset of brain disorders and pathogenesis. For example, steroid hormones, but also enzymes involved in steroidogenesis and receptors triggering hormone signaling are key players of gliomagenesis. In the present review we summarize the current knowledge about steroid hormone, particularly estrogens synthesis and signaling, in normal brain compared to the tumor brain. We will focus on two key molecular players, aromatase and the G Protein-Coupled Estrogen Receptor, GPER.
Collapse
Affiliation(s)
- Alex Hirtz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | - Fabien Rech
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France.
| | | | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| |
Collapse
|
4
|
Kurdi M, Fadul MM, Addas BMJ, Faizo E, Alkhayyat S, Bamaga AK, Alsinani T, Katib Y, Okal F, Maghrabi Y, Sabbagh AJ, Moshref R, Albalawi S, Alkhotani A, Halawa TF, Mulla N, Hakamy S, Baeesa S. Dynamic interplay between corticosteroid treatment and the role of SRC-1 gene dysregulation in the progression of WHO-Grade 4 Astrocytoma. J Neurooncol 2023; 163:693-705. [PMID: 37402091 PMCID: PMC10393858 DOI: 10.1007/s11060-023-04385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Corticosteroid is commonly used before surgery to control cerebral oedema in brain tumours and is frequently continued throughout treatment. Its long-term effect of on the recurrence of WHO-Grade 4 astrocytoma remains controversial. The interaction between corticosteroid, SRC-1 gene and cytotoxic T-cells has never been investigated. METHODS A retrospective cohort of 36 patients with WHO-Grade 4 astrocytoma were examined for CD8 + T-cell and SRC-1 gene expressions through IHC and qRT-PCR. The impact of corticosteroid on CD8+T-cells infiltration, SRC-1 expression, and tumour recurrence was analyzed. RESULTS The mean patients age was 47-years, with a male to female ratio 1.2. About 78% [n = 28] of the cases showed reduced or no CD8+T-cell expression while 22% [n = 8] of cases have showed medium to high CD8+T-cell expression. SRC-1 gene was upregulated in 5 cases [14%] and 31 cases [86%] showed SRC-1 downregulation. The average of total days and doses of administered corticosteroid from the preoperative period to the postoperative period was at range of 14-106 days and 41-5028 mg, respectively. There was no significant statistical difference in RFI among tumours expressing high or low CD8+T-cells when corticosteroid was administered in recommended or exceeded doses [p-value = 0.640]. There was a significant statistical difference in RFI between CD8+T-Cell expression and SRC-1 gene dysregulation [p-value = 002]. Tumours with high CD8+T T-cell expression and SRC-1 gene downregulation had late recurrence. CONCLUSIONS Corticosteroid treatment can directly affect the SRC-1 gene regulation but does not directly influence cytotoxic T-cells infiltration or tumor progression. However, SRC-1 gene downregulation can facilitate late tumor recurrence.
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia.
- Neuromuscular Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia.
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
| | - Bassam M J Addas
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eyad Faizo
- Department of Surgery, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Shadi Alkhayyat
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Paediatric, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taghreed Alsinani
- Department of Neurosurgery, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Yousef Katib
- Department of Radiology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Fahad Okal
- Department of Neuroscience, Neurosurgery Section, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Yazid Maghrabi
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman J Sabbagh
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana Moshref
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Sultan Albalawi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Alkhotani
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Taher F Halawa
- Department of Paediatric, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Nasser Mulla
- Department of Internal Medicine, Faculty of Medicine, Taibah University, Medina, Saudi Arabia
| | - Sahar Hakamy
- Neuromuscular Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
de Lucio Delgado A, Villegas Rubio JA, Riaño-Galán I, Pérez Gordón J. Effect of the Use of Gnrh Analogs in Low-Grade Cerebral Glioma. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10010115. [PMID: 36670665 PMCID: PMC9856414 DOI: 10.3390/children10010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Low-grade gliomas are the most common brain tumors in children. This tumor type presents a wide range of clinical, histological, and biological behaviors. In recent years, an association between estrogens and progesterone and the development of tumors has been suggested. A case of a 2-year-old girl is described with a low-grade brain tumor treated with chemotherapy and disease stabilization. The treatment with Decapeptyl® was initiated due to precocious puberty, and the tumor showed a decrease in its solid component-more than 50% of the initial size-three years after starting treatment. Several studies have described the influence of estrogen and progesterone on the development of gliomas, decreasing or increasing their expression in those tumors with greater aggressiveness, respectively. Despite the fact that the tumor-hormonal expression relationship in other tumor types has been evaluated, its role in the treatment of brain tumors remains unknown.
Collapse
Affiliation(s)
- Ana de Lucio Delgado
- Oncology Pediatric Department, Central University Hospital of Asturias, 33011 Oviedo, Spain
- Correspondence:
| | | | - Isolina Riaño-Galán
- Pediatric Endocrinology Department, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Juan Pérez Gordón
- Pediatric Endocrinology Department, Central University Hospital of Asturias, 33011 Oviedo, Spain
| |
Collapse
|
6
|
Ashwini K, Shilpa S. Shetty, Ananthan Raghotham, Suchetha Kumari N., Praveen Kumar Shetty. Sex hormone receptors and glioblastoma. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i4.1634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Glioblastoma (GBM) is the primary brain tumor of the central nervous system which is most common and the most aggressive of all other types of tumors. Current therapy for GBM involves surgical removal (excision) of the tumor followed by radiotherapy with concomitant and adjuvant therapy with temozolomide. Despite the improvement in therapy for GBM, survival of the patients remains poor, only up to 1 year. Treatment for GBM is limited due to the presence of blood brain barrier which prevents the entry of molecules with molecular weight >500 Dalton. Various gene mutations or over expressions lead to GBM growth. Evidence from the earlier reports suggest that epidermal growth factor receptor is overexpressed in 60% of GBM. Interestingly, recent studies have suggested the involvement of sex hormones in the development and progression of GBM though the underlying mechanism of action of these hormones is poorly understood. In this review, we discuss the role of sex hormones and their receptors, a contributing factor in the development of GBM
Collapse
|
7
|
Qu C, Wang C, Li H, Li Y, Han C, Tao X, Guan X, Zhang Y, Chen M, Liu J, Zou W. Estrogen receptor variant ER-α36 facilitates estrogen signaling via EGFR in glioblastoma. Cell Biol Int 2022; 46:1759-1774. [PMID: 35930599 DOI: 10.1002/cbin.11877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GBM) is a deadly and common primary brain tumor. Poor prognosis is linked to high proliferation and cell heterogeneity. Sex differences may play a role in patient outcome. Previous studies showed that ER-α36, a variant of the estrogen receptor (ER), mediated non-genomic estrogen signaling and is highly expressed in many ER-negative malignant tumors. ER-α36 also associates with epidermal growth factor receptor (EGFR). The primary purpose of this study is to investigate the cross talk between ER-α36 and EGFR in estrogen-mediated GBM cell proliferation. Here, we showed that ER-α36 was highly expressed and confirmed that ER-α36 co-labels with EGFR in human GBM samples using immunohistochemical techniques. We also investigated the mechanisms of estrogen-induced proliferation in ER-α-negative cell lines. We found that GBM cells showed varying responsive to mitogenic estrogen signaling which correlated with ER-α36 expression, and knockdown of ER-α36 diminished the response. Exposure to estrogen also caused upregulation of cyclin protein expression in vitro. We also found that low concentration of estrogen promoted SRC-Y-416 and inhibited SRC-Y-527 phosphorylation, corresponding with activated SRC signaling. Inhibiting SRC or EGFR abolished estrogen-induced mitogenic signaling, including cyclin expression and MAPK phosphorylation. Cumulatively, our results demonstrate that ER-α36 promotes non-genomic estrogen signaling via the EGFR/SRC/MAPK pathway in GBM. This may be important for the treatment of ER-α-negative GBMs that retain high level of ER-α36, since estrogen may be a viable therapeutic target for these patients.
Collapse
Affiliation(s)
- Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Cui Wang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Neurology Ward Three, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Hongyan Li
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaofeng Tao
- Neurology Ward Three, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Xin Guan
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yejun Zhang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Meng Chen
- Qingdao Re-store Life Science Co., Ltd., Qingdao, Shandong, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Qingdao Re-store Life Science Co., Ltd., Qingdao, Shandong, China
| |
Collapse
|
8
|
Estrogen Receptors as Molecular Targets of Endocrine Therapy for Glioblastoma. Int J Mol Sci 2021; 22:ijms222212404. [PMID: 34830286 PMCID: PMC8626012 DOI: 10.3390/ijms222212404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hormonal factors may participate in the development and progression of glioblastoma, the most aggressive primary tumor of the central nervous system. Many studies have been conducted on the possible involvement of estrogen receptors (ERs) in gliomas. Since there is a tendency for a reduced expression of ERs as the degree of malignancy of such tumors increases, it is important to understand the role of these receptors in the progression and treatment of this disease. ERs belong to the family of nuclear receptors, although they can also be in the plasmatic membrane, cytoplasm and mitochondria. They are classified as estrogen receptors alpha and beta (ER⍺ and ERβ), each with different isoforms that have a distinct function in the organism. ERs regulate multiple physiological and pathological processes through the activation of genomic and nongenomic pathways in the cell. Nevertheless, the role of each isoform in the development and progression of glioblastoma is not completely clear. Diverse in vitro and in vivo studies have shown encouraging results for endocrine therapy as a treatment for gliomas. At the same time, many questions have arisen concerning the nature of ERs as well as the mechanism of action of the proposed drugs. Hence, the aim of the current review is to describe the drugs that could possibly be utilized in endocrine therapy for the treatment of high-grade gliomas, analyze their interaction with ERs, and explore the involvement of these drugs and receptors in resistance to standard chemotherapy.
Collapse
|
9
|
Zhang S, Tian H, Sun Y, Li X, Wang W, Ru S. Brightened body coloration in female guppies (Poecilia reticulata) serves as an in vivo biomarker for environmental androgens: The example of 17β-trenbolone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112698. [PMID: 34450427 DOI: 10.1016/j.ecoenv.2021.112698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In vivo testing systems for environmental androgens are scarce. The aim of this study was to evaluate the potential of male-specific brightened body coloration in female guppies (Poecilia reticulata) to serve as an in vivo biomarker of environmental androgens using 17β-trenbolone as an example. The high bioaccumulation of 17β-trenbolone in the skin of female guppies suggests that it is a potential target tissue of environmental androgens. The coloration index, pigment cell ultrastructure, pigment levels, sexual attractiveness, and reproductive capability of female guppies were analyzed following 28 days of exposure to 20 ng/L, 200 ng/L, and 2000 ng/L 17β-trenbolone. Increases in the coloration index caused by 17β-trenbolone exposure were attributable to increased pteridine and melanin levels. Decreases in the sexual attractiveness, number of offspring, and survival rate of offspring suggested that the changes in body coloration translated into adverse outcomes. Finally, mRNA sequencing indicated that 17β-trenbolone increased pteridine levels by activating genomic effects of androgen receptor on xanthine dehydrogenase and increased melanin levels by exerting non-genomic effects targeting microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 that were mediated by mitogen-activated protein kinase and calcium signaling pathways. We have derived a robust adverse outcome pathway of environmental androgens, and our findings suggest that indicators at different biological levels related to brightened body coloration in female guppies can serve as less-invasive or noninvasive in vivo biomarkers of short-term exposure to environmental androgens.
Collapse
Affiliation(s)
- Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| | - Yang Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| |
Collapse
|
10
|
Daswani B, Khan Y. Insights into the role of estrogens and androgens in glial tumorigenesis. J Carcinog 2021; 20:10. [PMID: 34526856 PMCID: PMC8411981 DOI: 10.4103/jcar.jcar_2_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/19/2021] [Accepted: 04/24/2021] [Indexed: 01/02/2023] Open
Abstract
Gliomas are more common in males than in females. Emerging evidence from several studies in vitro and in vivo have shown the role of estrogens and androgens in glial tumorigenesis. In recent times, studies have also shed light on the actions of estrogen receptors, alpha and beta, and androgen receptor. Here, we provide a comprehensive overview of the research hitherto on estrogens and androgens along with an emphasis on their receptors in glioma pathophysiology. Studies with conflicting results are discussed and future possibilities are put forward. A collective understanding of the studies on these steroid hormones in glioma may serve to create an amalgamated therapeutic approach; and thereby, augment the efforts in tackling this deadly disease.
Collapse
Affiliation(s)
- Bhavna Daswani
- Department of Life Sciences, Sophia College (Autonomous), Mumbai, Maharashtra, India
| | - Yasmin Khan
- Department of Life Sciences, Sophia College (Autonomous), Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Meng Z, Wang X, Zhang D, Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: The central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis 2021; 9:1281-1289. [PMID: 35873031 PMCID: PMC9293692 DOI: 10.1016/j.gendis.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Chen Bian
- School of Psychology, Amy Medical University, Chongqing 400038, PR China
- Corresponding author.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- Corresponding author.
| |
Collapse
|
12
|
Bello-Alvarez C, Camacho-Arroyo I. Impact of sex in the prevalence and progression of glioblastomas: the role of gonadal steroid hormones. Biol Sex Differ 2021; 12:28. [PMID: 33752729 PMCID: PMC7986260 DOI: 10.1186/s13293-021-00372-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As in other types of cancers, sex is an essential factor in the origin and progression of glioblastomas. Research in the field of endocrinology and cancer suggests that gonadal steroid hormones play an important role in the progression and prevalence of glioblastomas. In the present review, we aim to discuss the actions and mechanism triggered by gonadal steroid hormones in glioblastomas. MAIN BODY Glioblastoma is the most common malignant primary brain tumor. According to the epidemiological data, glioblastomas are more frequent in men than in women in a 1.6/1 proportion both in children and adults. This evidence, and the knowledge about sex influence over the prevalence of countless diseases, suggest that male gonadal steroid hormones, such as testosterone, promote glioblastomas growth. In contrast, a protective role of female gonadal steroid hormones (estradiol and progesterone) against glioblastomas has been questioned. Several pieces of evidence demonstrate a variety of effects induced by female and male gonadal steroid hormones in glioblastomas. Several studies indicate that pregnancy, a physiological state with the highest progesterone and estradiol levels, accelerates the progression of low-grade astrocytomas to glioblastomas and increases the symptoms associated with these tumors. In vitro studies have demonstrated that progesterone has a dual role in glioblastoma cells: physiological concentrations promote cell proliferation, migration, and invasion while very high doses (out physiological range) reduce cell proliferation and increases cell death. CONCLUSION Gonadal steroid hormones can stimulate the progression of glioblastomas through the increase in proliferation, migration, and invasion. However, the effects mentioned above depend on the concentrations of these hormones and the receptor involved in hormone actions. Estradiol and progesterone can exert promoter or protective effects while the role of testosterone has been always associated to glioblastomas progression.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| |
Collapse
|
13
|
Orozco M, Valdez RA, Ramos L, Cabeza M, Segovia J, Romano MC. Dutasteride combined with androgen receptor antagonists inhibit glioblastoma U87 cell metabolism, proliferation, and invasion capacity: Androgen regulation. Steroids 2020; 164:108733. [PMID: 32980365 DOI: 10.1016/j.steroids.2020.108733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor in adult humans. Therapeutic resistance and tumor recurrence after surgical resection contributes to a poor prognosis for glioblastoma patients. Men are known to be more likely than women to develop an aggressive form of GB. Although the reasons for this disparity remain poorly understood, differences in sex steroids have emerged as a leading explanation. Studies indicate that GB-derived cells express androgen receptors (ARs) and synthesize androgens, suggesting that androgens may have a role in the tumor pathogenesis. Thus, our objective was to investigate the effects of the 5α-reductase enzyme inhibitor dutasteride, the AR antagonists cyproterone and flutamide, and combinations of these drugs on the metabolism, proliferation, and invasion capacity of GB-derived U87 cells. We also examined the effects of three natural androgens testosterone, androstenedione and dihydrotestosterone (T, A4, and DHT) on these cells. Cell metabolism was investigated by MTT assay, proliferation was assessed by the bromodeoxyuridine (BrdU) incorporation assay, and invasion was assessed by Boyden chamber assay. The results revealed that T and especially DHT, but not A4, increased U87 cell metabolism and proliferation. Following these findings, we examined the effect of adding dutasteride, cyproterone, or flutamide to the culture media and found that they all significantly decreased cell metabolism and proliferation. Dutasteride also significantly reduced cell invasion. Moreover, any combination of these drugs enhanced their inhibitory effects; the combination of dutasteride to flutamide was most effective at decreasing GB cell proliferation. Our results suggest that administering a combination of AR antagonists and enzyme blockers may be a more effective alternative treatment for GB.
Collapse
Affiliation(s)
- M Orozco
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del IPN, Ciudad de México, México
| | - R A Valdez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del IPN, Ciudad de México, México
| | - L Ramos
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de Mexico, Mexico
| | - M Cabeza
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
| | - J Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del IPN, Ciudad de México, México
| | - M C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del IPN, Ciudad de México, México.
| |
Collapse
|
14
|
Astrocytoma: A Hormone-Sensitive Tumor? Int J Mol Sci 2020; 21:ijms21239114. [PMID: 33266110 PMCID: PMC7730176 DOI: 10.3390/ijms21239114] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytomas and, in particular, their most severe form, glioblastoma, are the most aggressive primary brain tumors and those with the poorest vital prognosis. Standard treatment only slightly improves patient survival. Therefore, new therapies are needed. Very few risk factors have been clearly identified but many epidemiological studies have reported a higher incidence in men than women with a sex ratio of 1:4. Based on these observations, it has been proposed that the neurosteroids and especially the estrogens found in higher concentrations in women's brains could, in part, explain this difference. Estrogens can bind to nuclear or membrane receptors and potentially stimulate many different interconnected signaling pathways. The study of these receptors is even more complex since many isoforms are produced from each estrogen receptor encoding gene through alternative promoter usage or splicing, with each of them potentially having a specific role in the cell. The purpose of this review is to discuss recent data supporting the involvement of steroids during gliomagenesis and to focus on the potential neuroprotective role as well as the mechanisms of action of estrogens in gliomas.
Collapse
|
15
|
Zhang N, Deng Z, Li W, Zou Y, Xiong J, Duan L, Wang D. Expression of LRRC8A is elevated in the cytoplasm of osteosarcoma tissues: An immunohistochemical study with tissue microarrays. Exp Ther Med 2020; 21:71. [PMID: 33365071 PMCID: PMC7716646 DOI: 10.3892/etm.2020.9503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/28/2020] [Indexed: 01/18/2023] Open
Abstract
The purpose of the present study was to investigate the expression profile of leucine-rich repeat-containing protein 8A (LRRC8A) in osteosarcoma and normal cortical bone, as well as its association with sex, age and tumor malignancy. Immunohistochemical staining of osteosarcoma tissue microarrays (TMAs) was performed to determine the protein expression of LRRC8A and compare them among different subgroups. The expression of LRRC8A in the nuclei and cytoplasm of U2OS tumor cells and MC3T3-E1 osteoblast-like cells was determined using reverse transcription-quantitative PCR. Of all samples of the TMA for patients with osteosarcoma that were tested, 94% featured high cytoplasmic expression of LRRC8A, while in all normal bone tissue control groups, the gene was mainly expressed in the nucleus. In MC3T3-E1 osteoblasts, the expression of LRRC8A at the RNA level was mainly in the cytoplasm. The difference in expression of LRRC8A between microarrays and osteoblasts was statistically significant. In U2OS osteosarcoma cells, LRRC8A mRNA was concentrated in the nuclei and cytoplasm. In osteosarcoma, the expression level of LRRC8A was not significantly associated with sex or age. In conclusion, LRRC8A was highly expressed in the cytoplasm of osteosarcoma cells and the degree of expression may be associated with the degree of tumor malignancy.
Collapse
Affiliation(s)
- Ningfeng Zhang
- Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhiqin Deng
- Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Wencui Li
- Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Yan Zou
- Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jianyi Xiong
- Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Li Duan
- Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Daping Wang
- Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
16
|
Estradiol Induces Epithelial to Mesenchymal Transition of Human Glioblastoma Cells. Cells 2020; 9:cells9091930. [PMID: 32825553 PMCID: PMC7564468 DOI: 10.3390/cells9091930] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The mesenchymal phenotype of glioblastoma multiforme (GBM), the most frequent and malignant brain tumor, is associated with the worst prognosis. The epithelial–mesenchymal transition (EMT) is a cell plasticity mechanism involved in GBM malignancy. In this study, we determined 17β-estradiol (E2)-induced EMT by changes in cell morphology, expression of EMT markers, and cell migration and invasion assays in human GBM-derived cell lines. E2 (10 nM) modified the shape and size of GBM cells due to a reorganization of actin filaments. We evaluated EMT markers expression by RT-qPCR, Western blot, and immunofluorescence.We found that E2 upregulated the expression of the mesenchymal markers, vimentin, and N-cadherin. Scratch and transwell assays showed that E2 increased migration and invasion of GBM cells. The estrogen receptor-α (ER-α)-selective agonist 4,4’,4’’-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT, 10 nM) affected similarly to E2 in terms of the expression of EMT markers and cell migration, and the treatment with the ER-α antagonist methyl-piperidino-pyrazole (MPP, 1 μM) blocked E2 and PPT effects. ER-β-selective agonist diarylpropionitrile (DNP, 10 nM) and antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazole[1,5-a]pyrimidin-3-yl]phenol (PHTPP, 1 μM) showed no effects on EMT marker expression. These data suggest that E2 induces EMT activation through ER-α in human GBM-derived cells.
Collapse
|
17
|
Pinacho-Garcia LM, Valdez RA, Navarrete A, Cabeza M, Segovia J, Romano MC. The effect of finasteride and dutasteride on the synthesis of neurosteroids by glioblastoma cells. Steroids 2020; 155:108556. [PMID: 31866547 DOI: 10.1016/j.steroids.2019.108556] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/08/2019] [Indexed: 01/29/2023]
Abstract
Glioblastoma (GBM) is the most aggressive local brain tumor and effective treatments are lacking. Many studies have proposed an important participation of steroid hormones in the development of gliomas. Evidence was provided by statistics analysis where the incidence in adult population is 50% higher in men than in women. Female patients have a better prognosis for survival compared to male patients with GBM. Also, the expression of receptors to estrogen, progesterone and androgens in glioma cell lines and tumor biopsies, and glucocorticoid receptors in GBM cell lines had been reported. Here we have investigated the effect of the pharmacological inhibition of 5-α reductases on the capacity of GBM derived cell lines C6 (rat) and U87 (human) to synthesize neurosteroids. As the knowledge of the pathways used to synthesize neurosteroids by GBM derived cells was incomplete, we have investigated the synthesis of these steroids by C6 and U87 cells using tritiated precursors and thin layer chromatography (TLC). Increasing concentrations of finasteride and dutasteride were added to U87 culture media that was collected after 24 and 48 h. The results of the study showed that C6 cells incubated with 3H-cholesterol yielded dihydroandrosterone, hydroxytestosterone, androstenediol, androstenedione and estriol, while U87 cells also synthesized progesterone, and androstanedione. Incubation with 3H-androstenedione or 3H-testosterone mainly yielded dihydrotestosterone, androsterone, dihydroandrosterone, hydroxytestosterone, and estradiol in both lines. To note, we showed here for the first time that U87 cells synthesize corticosteroids. Addition of finasteride or dutasteride to U87 cells reduced androgen and estrogen synthesis. Dutasteride also decreased the synthesis of dihydrocorticosterone and allotetrahydrodesoxycorticosterone while deoxycorticosterone was accumulated. In summary, both GBM cell lines synthesize numerous neurosteroids, including 5-α reductase products and 3α-HSD pathways that were inhibited by finasteride and dutasteride. These inhibitors may be considered as tools to control neurosteroid synthesis of potential relevance for GBM survival.
Collapse
Affiliation(s)
- Luis Manuel Pinacho-Garcia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN # 2508, Ciudad de Mexico 07360, Mexico
| | - Ricardo A Valdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN # 2508, Ciudad de Mexico 07360, Mexico
| | - Araceli Navarrete
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN # 2508, Ciudad de Mexico 07360, Mexico
| | - Marisa Cabeza
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN # 2508, Ciudad de Mexico 07360, Mexico
| | - Marta C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Avenida IPN # 2508, Ciudad de Mexico 07360, Mexico.
| |
Collapse
|
18
|
Hu C, Fang D, Xu H, Wang Q, Xia H. The androgen receptor expression and association with patient's survival in different cancers. Genomics 2019; 112:1926-1940. [PMID: 31759122 DOI: 10.1016/j.ygeno.2019.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023]
Abstract
To understand the androgen receptor (AR) in different human malignancies, we conducted a pan-cancer analysis of AR in different tumor tissues and association with patient survival and obtained AR expression data from The Cancer Genome Atlas. Pan-Cancer Analysis of AR indicated that 12 tumor types had decreased AR expression in the tumor, while glioblastoma multiforme has overexpressed AR. The survival analysis showed that high AR mRNA is associated with poor survival of stomach adenocarcinoma and low-grade glioma, but better survival of adrenocortical carcinoma, kidney renal clear cell carcinoma, acute myeloid leukemia, liver hepatocellular carcinoma, ovarian serous cystadenocarcinoma, and skin cutaneous melanoma based on AR mRNA, protein or AR-score. AR was associated with different clinical characteristics and AR correlated genes enriched in cancer-related pathways. These data indicate that AR signaling may be strongly associated with some cancer development and patients' survival, which is promising for potential treatment using antiandrogen therapies.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 21116, China
| | - Dan Fang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 21116, China
| | - Haojun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 21116, China
| | - Qianghu Wang
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 211116 Nanjing, China
| | - Hongping Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 21116, China.
| |
Collapse
|
19
|
Deng Z, Li W, Alahdal M, Zhang N, Xie J, Hu X, Chen Y, Fang H, Duan L, Gu L, Wang D. Overexpression of ClC-3 Chloride Channel in Chondrosarcoma: An In Vivo Immunohistochemical Study with Tissue Microarray. Med Sci Monit 2019; 25:5044-5053. [PMID: 31281178 PMCID: PMC6637820 DOI: 10.12659/msm.917382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Recently, ClC-3 chloride channel expression has been noted to be high in some tumors. In chondrosarcoma, which is a malignant tumor with a high incidence in the bone, there has been no previous literature regarding ClC-3 chloride channel expression. Here we evaluated the expression of ClC-3 chloride channel in chondrosarcoma and explored its clinical significance. Material/Methods In this study, 75 chondrosarcoma and 5 normal cartilage tissues were collected. Thereafter, tissue microarray was performed. Immunohistochemistry was also used to observe the level of ClC-3 chloride channel expression between normal and chondrosarcoma tissues. Results Results showed that the expression of ClC-3 chloride channel in the normal chondrocyte was thinner, since it showed distinct differentiation among chondrosarcoma specimens. Interestingly, we noticed that the moderately-differentiated chondrosarcoma (MDC) and the poorly-differentiated chondrosarcoma (PDC) exhibited 94.44% of ClC-3 chloride channel. Besides, the subcellular localization of ClC-3 chloride channel was changed in association with malignant degree changes. The subcellular localization of ClC-3 chloride channel in the MDC and PDC tissue was localized in the cytoplasm and both nucleus and cytoplasm: 83.33% (5 out of 6 cases) and 91.66% (11 out of 12 cases) respectively. On the other hand, we noticed that patient age and gender could have a relation with ClC-3 chloride channel expression; 30- to 60-year-old males showed more expression. Conclusions These results demonstrated a high frequency of ClC-3 chloride channel overexpression and subcellular localization differences in MDC and PDC tissue, suggesting a specific role of ClC-3 chloride channel in the pathogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Wencui Li
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Murad Alahdal
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Ningfeng Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Junxiong Xie
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Xiaotian Hu
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Yang Chen
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Huankun Fang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| | - Liqiang Gu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
20
|
Malli A, Melissaris S, Dimitriadi A, Choreftaki T, Georgakoulias N. A Coexisting Pilocytic Astrocytoma and a Prolactinoma: A Case Report of Collision Tumors and Literature Review. Cureus 2019; 11:e4911. [PMID: 31423388 PMCID: PMC6692103 DOI: 10.7759/cureus.4911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pituitary adenomas and gliomas constitute two of the most common primary intracranial tumors. However, their coexistence as collision tumors is relatively rare and few similar reports could be identified in the literature. In this study, we report a case of a 64-year-old male patient with a prolactinoma and a pilocytic astrocytoma in collision. The patient underwent both an endoscopic transsphenoidal approach and a subfrontal craniotomy, achieving a gross total resection of the concomitant lesions in the sellar and suprasellar regions. Postoperatively, the patient's preoperative bitemporal hemianopsia resolved and no new deficits occurred. At his six-month follow-up, he remained free of neurologic deficits. Although causative factors are yet to be determined for these tumors in collision, their nonsyndromic coexistence could point to a common genetic linkage which will help to shed light on their natural history of occurrence.
Collapse
Affiliation(s)
- Antonia Malli
- Department of Neurosurgery, The National and Kapodistrian University of Athens School of Health Sciences, Athens, GRC
| | - Savvas Melissaris
- Department of Neurosurgery, General Hospital of Athens "G. Gennimatas", Athens, GRC
| | - Anastasia Dimitriadi
- Department of Pathology, General Hospital of Athens "G. Gennimatas", Athens, GRC
| | - Theodosia Choreftaki
- Department of Pathology, General Hospital of Athens "G. Gennimatas", Athens, GRC
| | | |
Collapse
|
21
|
Tavares CB, Gomes-Braga FDCS, Sousa EB, Borges US, Escórcio-Dourado CS, Silva-Sampaio JPD, Silva BBD. Evaluation of estrogen receptor expression in low-grade and high-grade astrocytomas. ACTA ACUST UNITED AC 2019; 64:1129-1133. [PMID: 30569990 DOI: 10.1590/1806-9282.64.12.1129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aims to compare estrogen receptor expression between low and high-grade astrocytomas. METHOD A study using paraffin blocks of glial tumors from the Anatomy Pathology archives of São Marcos Hospital was carried out and began after approval by the Review Board of the Federal University of Piaui. Specimens were histochemically marked with an anti-ER alpha antibody. Brown-stained nuclei were considered positive, regardless of reaction intensity. Data were statistically analyzed using the Mann-Whitney test and Spearman's correlation. Statistical significance was established at p<0.05. RESULTS The mean percentage of nuclei stained with anti-ER alpha in low-and high-grade astrocytomas was 0.04 and zero, respectively, while Spearman's correlation showed a strong negative association between low and high-grade tumors (p<0.001) and (r= -0.67), respectively. CONCLUSION In the current study, estrogen receptor expression was positive only in low-grade astrocytomas and nil in high-grade astrocytomas, showing that ER expression declines with the grade of tumor malignancy.
Collapse
Affiliation(s)
- Cléciton Braga Tavares
- Federal University of Piauí, Teresina, PI, Brasil.,Department of Oncology, Sao Marcos Hospital, Teresina, PI, Brasil
| | | | | | | | | | | | - Benedito Borges da Silva
- Federal University of Piauí, Teresina, PI, Brasil.,Northeast Network of Biotechnology (RENORBIO), Teresina, PI, Brasil
| |
Collapse
|
22
|
Rodríguez-Lozano DC, Piña-Medina AG, Hansberg-Pastor V, Bello-Alvarez C, Camacho-Arroyo I. Testosterone Promotes Glioblastoma Cell Proliferation, Migration, and Invasion Through Androgen Receptor Activation. Front Endocrinol (Lausanne) 2019; 10:16. [PMID: 30778332 PMCID: PMC6369181 DOI: 10.3389/fendo.2019.00016] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/10/2019] [Indexed: 01/04/2023] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive human brain tumors due to their high capacity to migrate and invade normal brain tissue. Epidemiological data report that GBM occur in a greater proportion in men than in women (3:2), suggesting the participation of sex hormones in the development of these tumors. It has been reported an increase in testosterone (T) levels in patients with GBM. In addition, androgen receptor (AR) is overexpressed in human GBM, and genetic silencing of AR, and its pharmacological inhibition, induce GBM cell death in vivo and in vitro. However, the role of T in proliferation, migration and invasion in human GBM cell lines has not been evaluated. We observed that T increased the number of U87, U251, and D54 cells derived from human GBM due to an increase in cell proliferation. This induction was blocked with flutamide, an antagonist of AR. T also induced migration and invasion of GBM cells that flutamide partially blocked. These data suggest that T through AR contributes to the progression of GBM by promoting proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Dulce Carolina Rodríguez-Lozano
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ana Gabriela Piña-Medina
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
23
|
Li S, Zhang H, Yu Y, Liu M, Guo D, Zhang X, Zhang J. Imbalanced expression pattern of steroid receptor coactivator-1 and -3 in liver cancer compared with normal liver: An immunohistochemical study with tissue microarray. Oncol Lett 2018; 16:6339-6348. [PMID: 30405769 PMCID: PMC6202514 DOI: 10.3892/ol.2018.9443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 08/10/2018] [Indexed: 12/02/2022] Open
Abstract
Steroids affect normal and pathological functions of the liver through receptors, which require coactivators for their transcriptional activation. Steroid receptor coactivator (SRC)-1 and SRC-3 have been demonstrated to be regulated in numerous cancers; however, their expression profiles in liver cancer including hepatocellular carcinoma (HCC) and cholangiocellular carcinoma (CCC) remain unclear. Using tissue microarray immunohistochemistry, normal liver tissue and HCC tissue exhibited immunoreactivity of SRC-1, which were predominantly localized within extranuclear components; in CCC, they were detected within the cell nuclei; SRC-3 was also detected in the cell nuclei. Furthermore, no altered expression of SRC-1 and SRC-3 was observed in liver cancer compared with normal liver tissue; however, in CCC, the expression of SRC-3 was significantly increased compared with that detected in HCC. Importantly, although expression of SRC-1 and SRC-3 did not reveal any significant differences (30 vs. 40%) in normal liver tissue, HCC and CCC expression of SRC-1 was significantly decreased compared with that of SRC-3 (9.3 vs. 36%, and 6.7 vs. 67.7% for HCC and CCC, respectively). Further comparative analysis revealed that this discrepancy was detected in males with liver cancer, across all ages of HCC cases, younger CCC cases and all stages of liver cancer. The results suggested the presence of an imbalanced expression pattern of SRC-1 and SRC-3 from normal liver tissue to liver cancer (decreased SRC-1 and increased SRC-3), which may affect hepatic function and therefore promote liver carcinogenesis.
Collapse
Affiliation(s)
- Shan Li
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China.,Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huiyan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yanlan Yu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China.,Cadet Brigade, Third Military Medical University, Chongqing 400038, P.R. China
| | - Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Deyu Guo
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xuqing Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
24
|
Yu Y, Li S, Zhang H, Zhang X, Guo D, Zhang J. NRSF/REST levels are decreased in cholangiocellular carcinoma but not hepatocellular carcinoma compared with normal liver tissues: A tissue microarray study. Oncol Lett 2018; 15:6592-6598. [PMID: 29725406 DOI: 10.3892/ol.2018.8169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
The transcription factor neuron-restrictive silencer factor (NRSF), also termed repressor element 1-silencing transcription factor (REST), has been previously demonstrated to repress the expression of neuronal genes in non-neuronal cells, facilitating the controlled development and organization of nerve tissue. However, previous studies have reported NRSF/REST to be upregulated or downregulated in multiple types of carcinoma. Liver diseases are a major global health concern, with cirrhosis and liver carcinoma among the most common causes of mortality worldwide. A previous study demonstrated that there were >400 NRSF/REST target genes in mouse liver cells; however, the expression profile of NRSF/REST in human liver disease remains unclear. The present study examined NRSF/REST expression in human normal and liver carcinoma samples using tissue microarray immunohistochemistry. The results demonstrated that in normal liver tissues, NRSF/REST can be detected in the cytoplasm and nuclei of the cell; whereas in the liver carcinoma tissue, NRSF/REST is only detected in the cytoplasm. Furthermore, the number of samples with high levels of NRSF/REST was significantly lower in cholangiocellular carcinoma samples compared with normal tissues. Additionally, no detectable sex- or age-associated differences were identified in NRSF/REST expression among all the tissues examined. In conclusion, the results of the present study revealed nuclear loss of NRSF/REST in hepatic carcinomas and decreased expression of NRSF/REST in cholangiocellular carcinoma, indicating that the cytoplasmic translocation of NRSF/REST may be involved in liver tumorigenesis. A low expression level of NRSF/REST may be a novel biomarker for cholangiocellular carcinoma.
Collapse
Affiliation(s)
- Yanlan Yu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shan Li
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huiyan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xuqing Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Deyu Guo
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
25
|
Lan YL, Zou S, Wang X, Lou JC, Xing JS, Yu M, Zhang B. Update on the therapeutic significance of estrogen receptor beta in malignant gliomas. Oncotarget 2017; 8:81686-81696. [PMID: 29113424 PMCID: PMC5655319 DOI: 10.18632/oncotarget.20970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022] Open
Abstract
Malignant glioma is the most fatal of the astrocytic lineage tumors despite therapeutic advances. Men have a higher glioma incidence than women, indicating that estrogen level differences between men and women may influence glioma pathogenesis. However, the mechanism underlying the anticancer effects of estrogen has not been fully clarified and is complicated by the presence of several distinct estrogen receptor types and the identification of a growing number of estrogen receptor splice variants. Specifically, it is generally accepted that estrogen receptor alpha (ERα) functions as a tumor promoter, while estrogen receptor beta (ERβ) functions as a tumor suppressor, and the role and therapeutic significance of ERβ signaling in gliomas remains elusive. Thus, a deeper analysis of ERβ could elucidate the role of estrogens in gender-related cancer incidence. ERβ has been found to be involved in complex interactions with malignant gliomas. In addition, the prognostic value of ERβ expression in glioma patients should not be ignored when considering translating experimental findings to clinical practice. More importantly, several potential drugs consisting of selective ERβ agonists have exhibited anti-glioma activities and could further extend the therapeutic potential of ERβ-selective agonists. Here, we review the literature to clarify the anti-glioma effect of ERβ. To clarify ERβ-mediated treatment effects in malignant gliomas, this review focuses on the potential mechanisms mediated by ERβ in the intracellular signaling events in glioma cells, the prognostic value of ERβ expression in glioma patients, and various ERβ agonists that could be potential drugs with anti-glioma activities.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- Department of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Shuang Zou
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jin-Shan Xing
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Min Yu
- Department of Neurology, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
26
|
A Dexamethasone-regulated Gene Signature Is Prognostic for Poor Survival in Glioblastoma Patients. J Neurosurg Anesthesiol 2017; 29:46-58. [PMID: 27653222 DOI: 10.1097/ana.0000000000000368] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dexamethasone is reported to induce both tumor-suppressive and tumor-promoting effects. The purpose of this study was to identify the genomic impact of dexamethasone in glioblastoma stem cell (GSC) lines and its prognostic value; furthermore, to identify drugs that can counter these side effects of dexamethasone exposure. METHODS We utilized 3 independent GSC lines with tumorigenic potential for this study. Whole-genome expression profiling and pathway analyses were done with dexamethasone-exposed and control cells. GSCs were also co-exposed to dexamethasone and temozolomide. Risk scores were calculated for most affected genes, and their associations with survival in The Cancer Genome Atlas and Repository of Molecular Brain Neoplasia Data databases. In silico Connectivity Map analysis identified camptothecin as antagonist to dexamethasone-induced negative effects. RESULTS Pathway analyses predicted an activation of dexamethasone network (z-score: 2.908). Top activated canonical pathways included "role of breast cancer 1 in DNA damage response" (P=1.07E-04). GSCs were protected against temozolomide-induced apoptosis when coincubated with dexamethasone. Altered cellular functions included cell movement, cell survival, and apoptosis with z-scores of 2.815, 5.137, and -3.122, respectively. CCAAT/enhancer binding protein beta (CEBPB) was activated in a dose dependent manner specifically in slow-dividing "stem-like" cells. CEBPB was activated in dexamethasone-treated orthotopic tumors. Patients with high risk scores had significantly shorter survival. Camptothecin was validated as potential partial neutralizer of dexamethasone-induced oncogenic effects. CONCLUSIONS Dexamethasone exposure induces a genetic program and CEBPB expression in GSCs that adversely affects key cellular functions and response to therapeutics. High risk scores associated with these genes have negative prognostic value in patients. Our findings further suggest camptothecin as a potential neutralizer of adverse dexamethasone-mediated effects.
Collapse
|
27
|
Tavares CB, Gomes-Braga FDCSA, Costa-Silva DR, Escórcio-Dourado CS, Borges US, Conde AM, da Conceição Barros-Oliveira M, Sousa EB, da Rocha Barros L, Martins LM, Facina G, da-Silva BB. Expression of estrogen and progesterone receptors in astrocytomas: a literature review. Clinics (Sao Paulo) 2016; 71:481-6. [PMID: 27626480 PMCID: PMC4975780 DOI: 10.6061/clinics/2016(08)12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/09/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: "estrogen receptor beta" OR "estrogen receptor alpha" OR "estrogen receptor antagonists" OR "progesterone receptors" OR "astrocytoma" OR "glioma" OR "glioblastoma". Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.
Collapse
Affiliation(s)
- Cléciton Braga Tavares
- Universidade Federal do Piauí, Programa de Pós-graduação de Ciência e Saúde, Teresina/PI, Brazil
- Hospital São Marcos, Teresina/PI, Brazil
| | | | | | | | | | - Airton Mendes Conde
- Universidade Federal do Piauí, Programa de Pós-graduação de Ciência e Saúde, Teresina/PI, Brazil
| | | | | | - Lorena da Rocha Barros
- Universidade Federal do Piauí, Programa de Pós-graduação de Ciência e Saúde, Teresina/PI, Brazil
| | - Luana Mota Martins
- Universidade Federal do Piauí, Departmento de Mastologia, Teresina/PI, Brazil
| | - Gil Facina
- Universidade Federal do Piauí, Departmento de Mastologia, Teresina/PI, Brazil
| | - Benedito Borges da-Silva
- Universidade Federal do Piauí, Programa de Pós-graduação de Ciência e Saúde, Teresina/PI, Brazil
- Universidade Federal do Piauí, Departmento de Mastologia, Teresina/PI, Brazil
| |
Collapse
|
28
|
Liu M, Zhang K, Zhao Y, Guo Q, Guo D, Zhang J. Evidence for involvement of steroid receptors and coactivators in neuroepithelial and meningothelial tumors. Tumour Biol 2014; 36:3251-61. [PMID: 25534237 DOI: 10.1007/s13277-014-2954-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/04/2014] [Indexed: 11/25/2022] Open
Abstract
Steroid receptors such as androgen receptor (AR) and estrogen receptors (ER) ER-α and ER-β, and their receptor coactivators (steroid receptor coactivator, SRC) are widely localized in the brain. Although previous studies have investigated the expression of steroid receptors in brain tumors like astrocytoma, the studies on the expression of steroid receptors and SRCs in other brain tumors are lacking. Here, we investigated the expression of AR, ERs, and SRCs in neuroepithelial (medulloblastoma, ependymoma, oligodendroglioma) and meningothelial meningioma using tissue microarray immunohistochemistry. Compared to normal brain tissue, we found that the expression of SRC-1, SRC-3, and ER-α significantly decreased in meningothelial tumor and neuroepithelial tumor, suggesting that the SRC-1/SRC-3 levels may be regulated by ER-α. Moreover, the levels of AR strongly correlated to the levels of ER-β. Furthermore, correlation was also detected between SRC-3 and AR in neuroepithelial tumor, and between ER-α and ER-β in meningothelial tumor. In addition, the decreased ratio of SRC-1/SRC-3 was associated with an increase of ER-β in neuroepithelial tumor. These results indicate that expressions of different steroid receptors and activators may be tumor type dependent. While AR, ER-α, and ER-β may be involved in the pathogenesis of meningothelial tumor, SRCs/ER-β axis and SRC-3/AR axis may play a role in the pathogenesis of neuroepithelial tumor.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | | | |
Collapse
|