1
|
Zhou Y, Zhang X, Li X, Zhu G, Gao T, Deng Y, Huang L, Liu Z. Anthropometric indicators may explain the high incidence of follicular lymphoma in Europeans: Results from a bidirectional two-sample two-step Mendelian randomisation. Gene 2024; 911:148320. [PMID: 38452876 DOI: 10.1016/j.gene.2024.148320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Non-Hodgkin's lymphoma incidence rates vary between European and Asian populations. The reasons remain unclear. This two-sample two-step Mendelian randomisation (MR) study aimed to investigate the causal relationship between anthropometric indicators (AIs) and diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) and the possible mediating role of basal metabolic rate (BMR) in Europe. METHODS We used the following AIs as exposures: body mass index (BMI), whole-body fat mass (WBFM), whole-body fat-free mass (WBFFM), waist circumference(WC), hip circumference(HC), standing height (SH), and weight(Wt). DLBCL and FL represented the outcomes, and BMR was a mediator. A two-sample MR analysis was performed to examine the association between AIs and DLBCL and FL onset. We performed reverse-MR analysis to determine whether DLBCL and FL interfered with the AIs. A two-step MR analysis was performed to determine whether BMR mediated the causality. FINDINGS WBFFM and SH had causal relationships with FL. A causal association between AIs and DLBCL was not observed. Reverse-MR analysis indicated the causal relationships were not bidirectional. Two-step MR suggested BMR may mediate the causal effect of WBFFM and SH on FL. CONCLUSIONS We observed a causal relationship between WBFFM and SH and the onset of FL in Europeans, Which may explain the high incidence of follicular lymphoma in Europeans.
Collapse
Affiliation(s)
- Yanqun Zhou
- The Second Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China; Department of Hematology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Xiongfeng Zhang
- The Second Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China; Department of Hematology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Xiaozhen Li
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoqing Zhu
- The Second Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China; Department of Hematology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Tianqi Gao
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Deng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liming Huang
- The Second Clinical Medical School of Guizhou University of Chinese Medicine, Guiyang, China; Department of Hematology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China.
| | - Zenghui Liu
- Department of Hematology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Odutola MK, van Leeuwen MT, Bruinsma F, Turner J, Hertzberg M, Seymour JF, Prince HM, Trotman J, Verner E, Roncolato F, Opat S, Lindeman R, Tiley C, Milliken ST, Underhill CR, Benke G, Giles GG, Vajdic CM. A Population-Based Family Case-Control Study of Sun Exposure and Follicular Lymphoma Risk. Cancer Epidemiol Biomarkers Prev 2024; 33:106-116. [PMID: 37831120 PMCID: PMC10774741 DOI: 10.1158/1055-9965.epi-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Epidemiologic evidence suggests an inverse association between sun exposure and follicular lymphoma risk. METHODS We conducted an Australian population-based family case-control study based on 666 cases and 459 controls (288 related, 171 unrelated). Participants completed a lifetime residence and work calendar and recalled outdoor hours on weekdays, weekends, and holidays in the warmer and cooler months at ages 10, 20, 30, and 40 years, and clothing types worn in the warmer months. We used a group-based trajectory modeling approach to identify outdoor hour trajectories over time and examined associations with follicular lymphoma risk using logistic regression. RESULTS We observed an inverse association between follicular lymphoma risk and several measures of high lifetime sun exposure, particularly intermittent exposure (weekends, holidays). Associations included reduced risk with increasing time outdoors on holidays in the warmer months [highest category OR = 0.56; 95% confidence interval (CI), 0.42-0.76; Ptrend < 0.01], high outdoor hours on weekends in the warmer months (highest category OR = 0.71; 95% CI, 0.52-0.96), and increasing time outdoors in the warmer and cooler months combined (highest category OR = 0.66; 95% CI, 0.50-0.91; Ptrend 0.01). Risk was reduced for high outdoor hour maintainers in the warmer months across the decade years (OR = 0.71; 95% CI, 0.53-0.96). CONCLUSIONS High total and intermittent sun exposure, particularly in the warmer months, may be protective against the development of follicular lymphoma. IMPACT Although sun exposure is not recommended as a cancer control policy, confirming this association may provide insights regarding the future control of this intractable malignancy.
Collapse
Affiliation(s)
- Michael K. Odutola
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina T. van Leeuwen
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Fiona Bruinsma
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer Turner
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, Sydney, Australia
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Science, Macquarie University, Sydney, Australia
| | - Mark Hertzberg
- Department of Haematology, Prince of Wales Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | - John F. Seymour
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - H. Miles Prince
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Judith Trotman
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Emma Verner
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | | | - Stephen Opat
- Clinical Haematology, Monash Health, Clayton, Victoria, Australia
| | - Robert Lindeman
- New South Wales Health Pathology, Sydney, New South Wales, Australia
| | | | | | - Craig R. Underhill
- Border Medical Oncology Research Unit, Albury, New South Wales, Australia
| | - Geza Benke
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Victoria, Australia
| | - Claire M. Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|